2.3 Quadratische Gleichungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 18: Zeile 18:
'''Lernziele:'''
'''Lernziele:'''
-
Nach diesem Abschnitt sollten Sie folgendes können:
+
Nach diesem Abschnitt solltest Du folgendes können:
* Quadratische Ergänzungen für quadratische Ausdrücke ausführen.
* Quadratische Ergänzungen für quadratische Ausdrücke ausführen.
* Quadratische Gleichungen durch quadratische Ergänzung lösen, und die Lösungen kontrollieren.
* Quadratische Gleichungen durch quadratische Ergänzung lösen, und die Lösungen kontrollieren.
Zeile 53: Zeile 53:
<ol type="a">
<ol type="a">
-
<li>Lösen Sie die Gleichung <math>\ (x-1)^2 = 16</math>. <br><br>
+
<li>Löse die Gleichung <math>\ (x-1)^2 = 16</math>. <br><br>
Indem wir zuerst <math>x-1</math> betrachten, sehen wir, dass
Indem wir zuerst <math>x-1</math> betrachten, sehen wir, dass
*<math>x-1 =\sqrt{16} = 4\,</math> also <math>x=1+4=5</math>,
*<math>x-1 =\sqrt{16} = 4\,</math> also <math>x=1+4=5</math>,
Zeile 81: Zeile 81:
<ol type="a">
<ol type="a">
-
<li> Lösen Sie die Gleichung <math>\ x^2 +2x -8=0</math>. <br><br>
+
<li> Löse die Gleichung <math>\ x^2 +2x -8=0</math>. <br><br>
Wir benutzen die quadratische Ergänzung: <math>x^2+2x</math> (hier ist also <math>a=1</math>)
Wir benutzen die quadratische Ergänzung: <math>x^2+2x</math> (hier ist also <math>a=1</math>)
{{Abgesetzte Formel||<math>\underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,</math>}}
{{Abgesetzte Formel||<math>\underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,</math>}}
Zeile 90: Zeile 90:
*<math>x+1 =-\sqrt{9} = -3\,</math>, also <math>x=-1-3=-4</math>.</li>
*<math>x+1 =-\sqrt{9} = -3\,</math>, also <math>x=-1-3=-4</math>.</li>
-
<li> Lösen Sie die Gleichung <math>\ 2x^2 -2x - \frac{3}{2} = 0</math>. <br><br>
+
<li> Löse die Gleichung <math>\ 2x^2 -2x - \frac{3}{2} = 0</math>. <br><br>
Wir dividieren zuerst beide Seiten durch 2
Wir dividieren zuerst beide Seiten durch 2
{{Abgesetzte Formel||<math>x^2-x-\textstyle\frac{3}{4}=0\mbox{.}</math>}}
{{Abgesetzte Formel||<math>x^2-x-\textstyle\frac{3}{4}=0\mbox{.}</math>}}
Zeile 127: Zeile 127:
<ol type="a">
<ol type="a">
-
<li>Lösen Sie die Gleichung <math>\ x^2-4x=0</math>. <br><br>
+
<li>Löse die Gleichung <math>\ x^2-4x=0</math>. <br><br>
Wir können die linke Seite faktorisieren, nachdem der Faktor <math>x</math> in allen Termen auftritt
Wir können die linke Seite faktorisieren, nachdem der Faktor <math>x</math> in allen Termen auftritt
:<math>x(x-4)=0</math>.
:<math>x(x-4)=0</math>.
Zeile 160: Zeile 160:
{| width="100%"
{| width="100%"
||<ol type="a">
||<ol type="a">
-
<li>Zeichnen Sie die Parabel <math>\ y=x^2-2</math>. <br><br>
+
<li>Zeichne die Parabel <math>\ y=x^2-2</math>. <br><br>
Im Vergleich zur Parabel <math>y=x^2</math> hat diese Parabel(<math>y=x^2-2</math>) einen <math>y</math>-Wert, der 2 Einheiten kleiner ist. Also schieben wir die Parabel <math>y=x^2</math> einfach zwei Einheiten herunter.</li>
Im Vergleich zur Parabel <math>y=x^2</math> hat diese Parabel(<math>y=x^2-2</math>) einen <math>y</math>-Wert, der 2 Einheiten kleiner ist. Also schieben wir die Parabel <math>y=x^2</math> einfach zwei Einheiten herunter.</li>
</ol>
</ol>
Zeile 168: Zeile 168:
{| width="100%"
{| width="100%"
||<ol type="a" start=2>
||<ol type="a" start=2>
-
<li> Zeichnen Sie die Parabel <math>\ y=(x-2)^2</math>. <br><br>
+
<li> Zeichne die Parabel <math>\ y=(x-2)^2</math>. <br><br>
Für die Parabel <math>y=(x-2)^2</math> müssen wir den <math>x</math>-Wert um zwei Einheiten größer wählen als für die Parabel <math>y=x^2</math>, um denselben <math>y</math>-Wert zu bekommen. Also ist die Parabel <math>y=(x-2)^2</math>, die Parabel <math>y=x^2</math> zwei Einheiten nach rechts verschoben.</li>
Für die Parabel <math>y=(x-2)^2</math> müssen wir den <math>x</math>-Wert um zwei Einheiten größer wählen als für die Parabel <math>y=x^2</math>, um denselben <math>y</math>-Wert zu bekommen. Also ist die Parabel <math>y=(x-2)^2</math>, die Parabel <math>y=x^2</math> zwei Einheiten nach rechts verschoben.</li>
</ol>
</ol>
Zeile 176: Zeile 176:
{| width="100%"
{| width="100%"
||<ol type="a" start=3>
||<ol type="a" start=3>
-
<li> Zeichnen Sie die Parabel <math>\ y=2x^2</math>. <br><br>
+
<li> Zeichne die Parabel <math>\ y=2x^2</math>. <br><br>
Jeder Punkt auf der Parabel <math>y=2x^2</math> hat für denselben <math>x</math>-Wert einen zwei Mal so großen <math>y</math>-Wert als die Parabel <math>y=x^2</math>. Also müssen wir die Parabel <math>y=x^2</math> um einen Faktor <math>2</math> in der <math>y</math>-Richtung vergrößern, um die Parabel <math>y=2x^2</math> zu bekommen.
Jeder Punkt auf der Parabel <math>y=2x^2</math> hat für denselben <math>x</math>-Wert einen zwei Mal so großen <math>y</math>-Wert als die Parabel <math>y=x^2</math>. Also müssen wir die Parabel <math>y=x^2</math> um einen Faktor <math>2</math> in der <math>y</math>-Richtung vergrößern, um die Parabel <math>y=2x^2</math> zu bekommen.
</ol>
</ol>
Zeile 188: Zeile 188:
{| width="100%"
{| width="100%"
-
||Zeichnen Sie die Parabel <math>\ y=x^2+2x+2</math>.
+
||Zeichne die Parabel <math>\ y=x^2+2x+2</math>.
Zeile 201: Zeile 201:
''' Beispiel 7'''
''' Beispiel 7'''
-
Bestimmen Sie den Schnittpunkt der Parabel <math>\,y=x^2-4x+3\,</math> mit der <math>x</math>-Achse.
+
Bestimme den Schnittpunkt der Parabel <math>\,y=x^2-4x+3\,</math> mit der <math>x</math>-Achse.
Zeile 223: Zeile 223:
''' Beispiel 8'''
''' Beispiel 8'''
-
Bestimmen Sie den kleinsten Wert des Ausdruckes <math>\,x^2+8x+19\,</math>.
+
Bestimme den kleinsten Wert des Ausdruckes <math>\,x^2+8x+19\,</math>.
Zeile 243: Zeile 243:
'''Diagnostische Prüfung und Schlussprüfung'''
'''Diagnostische Prüfung und Schlussprüfung'''
-
Nachdem Sie mit der Theorie fertig sind, sollten Sie die diagnostische Prüfung und die Schlussprüfung machen. Sie finden die Links zu den Prüfungen in Ihrer "Student Lounge".
+
-
 
+
Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".
'''Bedenken Sie folgendes: '''
'''Bedenken Sie folgendes: '''
-
Nehmen Sie sich viel Zeit, um Algebra ordentlich zu lernen. Algebra ist das Alphabet der Mathematik, und kommt überall sonst in der Mathematik vor.
+
Nimm dir viel Zeit, um Algebra ordentlich zu lernen. Algebra ist das Alphabet der Mathematik, und kommt überall sonst in der Mathematik vor.
-
'''Reviews'''
+
'''Literaturhinweise'''
 +
Für die, die tiefer in die Materie Eindringen wollen, sind hier einige Links ang
 +
eführt:
-
For those of you who want to deepen your studies or need more detailed explanations consider the following references
 
[http://de.wikipedia.org/wiki/Quadratische_Gleichung Mehr über Quadratische Gleichungen in der Wikipedia ]
[http://de.wikipedia.org/wiki/Quadratische_Gleichung Mehr über Quadratische Gleichungen in der Wikipedia ]

Version vom 14:15, 28. Jul. 2009

       Theorie          Übungen      

Inhalt:

  • Quadratische Ergänzung
  • Quadratische Funktionen
  • Faktorisierung
  • Parabeln

Lernziele:

Nach diesem Abschnitt solltest Du folgendes können:

  • Quadratische Ergänzungen für quadratische Ausdrücke ausführen.
  • Quadratische Gleichungen durch quadratische Ergänzung lösen, und die Lösungen kontrollieren.
  • Wenn möglich, eine quadratische Gleichung faktorisieren.
  • Faktorisierte, oder fast faktorisierte quadratische Gleichungen direkt lösen.
  • Den kleinsten und größten Wert eines quadratischen Ausdruckes finden.
  • Parabeln zeichnen mittels quadratischer Ergänzung.

Quadratische Gleichungen

Eine quadratische Gleichung kann wie

\displaystyle x^2+px+q=0

geschrieben werden, wo \displaystyle x unbekannt ist, und \displaystyle p und \displaystyle q Konstanten sind.

Einfache quadratische Gleichungen kann man lösen, indem man einfach Wurzeln berechnet.

Die Gleichung \displaystyle x^2=a wo \displaystyle a > 0, hat zwei Lösungen (Wurzeln), nämlich \displaystyle x=\sqrt{a} und \displaystyle x=-\sqrt{a}.

Beispiel 1

  1. \displaystyle x^2 = 4 \quad hat die Wurzeln \displaystyle x=\sqrt{4} = 2 und \displaystyle x=-\sqrt{4}= -2.
  2. \displaystyle 2x^2=18 \quad kann wie \displaystyle x^2=9 geschrieben werden, hat also die Wurzeln \displaystyle x=\sqrt9 = 3 und \displaystyle x=-\sqrt9 = -3.
  3. \displaystyle 3x^2-15=0 \quad kann wie \displaystyle x^2=5 geschrieben werden, hat also die Wurzeln \displaystyle x=\sqrt5 \approx 2{,}236 und \displaystyle x=-\sqrt5 \approx -2{,}236.
  4. \displaystyle 9x^2+25=0\quad hat keine Wurzeln, nachdem die linke Seite der Gleichung immer größer als 25 is, weil \displaystyle x^2 immer größer als 0 ist.

Beispiel 2

  1. Löse die Gleichung \displaystyle \ (x-1)^2 = 16.

    Indem wir zuerst \displaystyle x-1 betrachten, sehen wir, dass
    • \displaystyle x-1 =\sqrt{16} = 4\, also \displaystyle x=1+4=5,
    • \displaystyle x-1 = -\sqrt{16} = -4\, also \displaystyle x=1-4=-3.
  2. Lösen Sie die Gleichung \displaystyle \ 2(x+1)^2 -8=0.

    Wir addieren \displaystyle 8 auf beiden Seiten der Gleichung, und dividieren danach durch \displaystyle 2,
    \displaystyle (x+1)^2=4 \; \mbox{.}

    Die Wurzeln sind

    • \displaystyle x+1 =\sqrt{4} = 2, \quad \mbox{also} \quad x=-1+2=1\,\mbox{,}
    • \displaystyle x+1 = -\sqrt{4} = -2, \quad \mbox{also} \quad x=-1-2=-3\,\mbox{.}

Um eine allgemeine quadratische Gleichung zu lösen, muss man das Prinzip der quadratischen Ergänzung benutzen.

Die binomische Formel lautet

\displaystyle x^2 + 2ax + a^2 = (x+a)^2\,.

Subtrahieren wir \displaystyle a^2 von beiden Seiten, bekommen wir

Quadratische Ergänzung:

\displaystyle x^2 +2ax = (x+a)^2 -a^2

Beispiel 3

  1. Löse die Gleichung \displaystyle \ x^2 +2x -8=0.

    Wir benutzen die quadratische Ergänzung: \displaystyle x^2+2x (hier ist also \displaystyle a=1)
    \displaystyle \underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,

    wo wir bei den unterstrichenen Termen die quadratische Ergänzung benutzt haben. Die Gleichung kann also wie

    \displaystyle (x+1)^2 -9 = 0,

    geschrieben werden, und diese Gleichung hat die Wurzeln

    • \displaystyle x+1 =\sqrt{9} = 3\,, also \displaystyle x=-1+3=2,
    • \displaystyle x+1 =-\sqrt{9} = -3\,, also \displaystyle x=-1-3=-4.
  2. Löse die Gleichung \displaystyle \ 2x^2 -2x - \frac{3}{2} = 0.

    Wir dividieren zuerst beide Seiten durch 2
    \displaystyle x^2-x-\textstyle\frac{3}{4}=0\mbox{.}

    Jetzt benutzen wir quadratische Ergänzung auf der linken Seite (mit \displaystyle a=-\tfrac{1}{2})

    \displaystyle \textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1\,.

    Dies ergibt die Gleichung

    \displaystyle \textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.}

    mit den Wurzeln

    • \displaystyle x-\tfrac{1}{2} =\sqrt{1} = 1, \quad, also \displaystyle \quad x=\tfrac{1}{2}+1=\tfrac{3}{2},
    • \displaystyle x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad, also \displaystyle \quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}.

Hinweis:

Wir können unsere Lösungen immer kontrollieren, indem wir sie in der ursprünglichen Gleichung einsetzen. Im Beispiel 3a oben, haben wir zwei Lösungen zu kontrollieren:

  • \displaystyle x = 2 ergibt \displaystyle \mbox{Linke Seite} = 2^2 +2\cdot 2 - 8 = 4+4-8 = 0 = \mbox{Rechte Seite}.
  • \displaystyle x = -4 ergibt \displaystyle \mbox{Linke Seite} = (-4)^2 + 2\cdot(-4) -8 = 16-8-8 = 0 = \mbox{Rechte Seite}.

In beide Fällen erhalten wir linke Seite = rechte Seite. Also sind unsere Lösungen richtig.

Mit der quadratischen Ergänzung kann man eine generelle Lösungsformel für quadratische Gleichungen herleiten

\displaystyle x^2+px+q=0

hat die Lösungen

\displaystyle x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}\,,

solange die Ausdrücke in der Wurzel nicht negativ sind.

In manchen Fällen kann man eine quadratische Gleichung einfach faktorisieren, um die Lösungen zu erhalten.

Beispiel 4

  1. Löse die Gleichung \displaystyle \ x^2-4x=0.

    Wir können die linke Seite faktorisieren, nachdem der Faktor \displaystyle x in allen Termen auftritt
    \displaystyle x(x-4)=0.
    Die linke Seite der Gleichung ist null nur dann, wenn einer ihrer Faktoren null ist.
    • \displaystyle x =0,\quad oder
    • \displaystyle x-4=0\quad. Dies ergibt die Lösungen \displaystyle \quad x=4.


Quadratische Funktionen

Die Funktionen

\displaystyle \eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x}

sind Beispiele von quadratischen Funktionen. Die allgemeine Formel für eine quadratische Funktion ist

\displaystyle y=ax^2+bx+c\,,

wobei \displaystyle a, \displaystyle b und \displaystyle c Konstanten sind, und \displaystyle a\ne0.

Der Funktionsgraph einer quadratischen Funktion ist eine Parabel. Folgende Figuren zeigen zwei typische Parabeln, die Graphen von \displaystyle y=x^2 und \displaystyle y=-x^2.

[Image]

Die linke Figur zeigt die Parabel \displaystyle y=x^2 und die rechte Figur zeigt die Parabel \displaystyle y=-x^2.


Nachdem der \displaystyle x^2-Term minimal ist, wenn \displaystyle x=0, hat die Parabel \displaystyle y=x^2 ein Minimum in \displaystyle x=0, und die Parabel \displaystyle y=-x^2 hat ein Maximum in \displaystyle x=0.

Die beiden Parabeln oben sind auch symmetrisch um die \displaystyle y-Achse, nachdem der Wert von \displaystyle x^2 derselbe ist, egal ob \displaystyle x positiv oder negativ ist.

Beispiel 5

  1. Zeichne die Parabel \displaystyle \ y=x^2-2.

    Im Vergleich zur Parabel \displaystyle y=x^2 hat diese Parabel(\displaystyle y=x^2-2) einen \displaystyle y-Wert, der 2 Einheiten kleiner ist. Also schieben wir die Parabel \displaystyle y=x^2 einfach zwei Einheiten herunter.

[Image]

  1. Zeichne die Parabel \displaystyle \ y=(x-2)^2.

    Für die Parabel \displaystyle y=(x-2)^2 müssen wir den \displaystyle x-Wert um zwei Einheiten größer wählen als für die Parabel \displaystyle y=x^2, um denselben \displaystyle y-Wert zu bekommen. Also ist die Parabel \displaystyle y=(x-2)^2, die Parabel \displaystyle y=x^2 zwei Einheiten nach rechts verschoben.

[Image]

  1. Zeichne die Parabel \displaystyle \ y=2x^2.

    Jeder Punkt auf der Parabel \displaystyle y=2x^2 hat für denselben \displaystyle x-Wert einen zwei Mal so großen \displaystyle y-Wert als die Parabel \displaystyle y=x^2. Also müssen wir die Parabel \displaystyle y=x^2 um einen Faktor \displaystyle 2 in der \displaystyle y-Richtung vergrößern, um die Parabel \displaystyle y=2x^2 zu bekommen.

[Image]

Eine allgemeine Parabel kann einfach gezeichnet werden, indem man die quadratische Ergänzung verwendet.

Beispiel 6

Zeichne die Parabel \displaystyle \ y=x^2+2x+2.


Wenn wir die linke Seite der Gleichung mit der quadratischer Ergänzung umschreiben, bekommen wir

\displaystyle x^2 +2x+2 = (x+1)^2 -1^2 +2 = (x+1)^2+1

und sehen, dass die Parabel \displaystyle y= (x+1)^2+1 um eine Einheit nach links, und um eine Einheit nach oben verschoben ist, im Vergleich zur Parabel \displaystyle y=x^2.

[Image]

Beispiel 7

Bestimme den Schnittpunkt der Parabel \displaystyle \,y=x^2-4x+3\, mit der \displaystyle x-Achse.


Alle Punkte auf der \displaystyle x-Achse haben den \displaystyle y-Koordinaten 0. Die Punkte, die auf der Parabel und auch auf der \displaystyle x-Achse liegen, haben also die \displaystyle y-Koordinate 0 und erfüllen die Gleichung

\displaystyle x^2-4x+3=0\mbox{.}

quadratische Ergänzung gibt

\displaystyle x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1

und schließlich

\displaystyle (x-2)^2= 1 \; \mbox{.}

Wir erhalten die Wurzeln

  • \displaystyle x-2 =\sqrt{1} = 1,\quad, also \displaystyle \quad x=2+1=3,
  • \displaystyle x-2 = -\sqrt{1} = -1,\quad, also \displaystyle \quad x=2-1=1.

Die Schnittpunkte der \displaystyle x-Achse mit der Parabel \displaystyle \,y=x^2-4x+3\, sind \displaystyle (1,0) und \displaystyle (3,0).

[Image]

Beispiel 8

Bestimme den kleinsten Wert des Ausdruckes \displaystyle \,x^2+8x+19\,.


Wir verwenden die quadratische Ergänzung

\displaystyle x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3

und sehen hier, dass der Ausdruck immer gleich oder größer als 3 ist, nachdem die Quadrate \displaystyle (x+4)^2 immer größer oder gleich 0 ist.

In der Figur unten sehen wir, dass die Parabel \displaystyle y=x^2+8x+19 oberhalb der \displaystyle x-Achse liegt, und den kleinsten Wert 3 hat, wenn \displaystyle x=-4.

[Image]


Übungen

Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung


Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".

Bedenken Sie folgendes:

Nimm dir viel Zeit, um Algebra ordentlich zu lernen. Algebra ist das Alphabet der Mathematik, und kommt überall sonst in der Mathematik vor.


Literaturhinweise Für die, die tiefer in die Materie Eindringen wollen, sind hier einige Links ang eführt:


Mehr über Quadratische Gleichungen in der Wikipedia

Learn more about quadratic equations in mathworld

101 uses of a quadratic equation - by Chris Budd and Chris Sangwin


Nützliche Websites