Lösung 4.2:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 10: Zeile 10:
{| width="100%"
{| width="100%"
-
|width="50%" align="center"|[[Image:4_2_3_f3.gif]]
+
|width="50%" align="center"|[[Image:4_2_3_f3_de.gif]]
|width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align}</math>
|width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align}</math>
|}
|}
Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel <math>-\pi/6</math> und sind also <math>(\sqrt{3}/2,-1/2)</math>. Inbesondere ist <math>\cos (-\pi/6) = \sqrt{3}/2\,</math>.
Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel <math>-\pi/6</math> und sind also <math>(\sqrt{3}/2,-1/2)</math>. Inbesondere ist <math>\cos (-\pi/6) = \sqrt{3}/2\,</math>.

Version vom 15:48, 30. Jul. 2009

Der Punkt auf den Einheitskreis, der dem Winkel \displaystyle -\pi/6 entspricht, liegt im vierten Quadranten:

Wir betrachten ein Dreieck im vierten Quadranten:

Wir berechnen zuerst die Katheten des Dreieckes und danach die Koordinaten des Punktes.

Image:4_2_3_f3_de.gif \displaystyle \begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align}

Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel \displaystyle -\pi/6 und sind also \displaystyle (\sqrt{3}/2,-1/2). Inbesondere ist \displaystyle \cos (-\pi/6) = \sqrt{3}/2\,.