Lösung 4.4:2e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Diese Gleichung ist fast dieselbe wie in der vorigen Übung. Wir bestimmen zuerst die Winkeln die <math>0\le 5x\le 2\pi</math> erfüllen durch den Einheitskreis.
+
Diese Gleichung ist fast dieselbe wie in der vorigen Übung. Wir bestimmen zuerst die Winkel, die <math>0\le 5x\le 2\pi</math> erfüllen durch den Einheitskreis:
{{Abgesetzte Formel||<math>5x = \frac{\pi}{6}\qquad\text{und}\qquad 5x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>5x = \frac{\pi}{6}\qquad\text{und}\qquad 5x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}\,\textrm{.}</math>}}
Zeile 5: Zeile 5:
[[Image:4_4_2_e.gif|center]]
[[Image:4_4_2_e.gif|center]]
-
Wir erhalten die Allgemeine Lösung indem wir einen Multipel von <math>2\pi</math> zu den Lösungen addieren,
+
Wir erhalten die allgemeine Lösung, indem wir ein Vielfaches von <math>2\pi</math> zu den Lösungen addieren.
{{Abgesetzte Formel||<math>5x = \frac{\pi}{6} + 2n\pi\qquad\text{und}\qquad 5x = \frac{5\pi}{6} + 2n\pi\,,</math>}}
{{Abgesetzte Formel||<math>5x = \frac{\pi}{6} + 2n\pi\qquad\text{und}\qquad 5x = \frac{5\pi}{6} + 2n\pi\,,</math>}}
-
dividieren wir durch 5 erhalten wir
+
dividieren wir durch 5 und erhalten
{{Abgesetzte Formel||<math>x = \frac{\pi}{30} + \frac{2}{5}n\pi\qquad\text{und}\qquad x = \frac{\pi}{6} + \frac{2}{5}n\pi\,,</math>}}
{{Abgesetzte Formel||<math>x = \frac{\pi}{30} + \frac{2}{5}n\pi\qquad\text{und}\qquad x = \frac{\pi}{6} + \frac{2}{5}n\pi\,,</math>}}

Version vom 14:23, 19. Jun. 2009

Diese Gleichung ist fast dieselbe wie in der vorigen Übung. Wir bestimmen zuerst die Winkel, die \displaystyle 0\le 5x\le 2\pi erfüllen durch den Einheitskreis:

\displaystyle 5x = \frac{\pi}{6}\qquad\text{und}\qquad 5x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}\,\textrm{.}

Wir erhalten die allgemeine Lösung, indem wir ein Vielfaches von \displaystyle 2\pi zu den Lösungen addieren.

\displaystyle 5x = \frac{\pi}{6} + 2n\pi\qquad\text{und}\qquad 5x = \frac{5\pi}{6} + 2n\pi\,,

dividieren wir durch 5 und erhalten

\displaystyle x = \frac{\pi}{30} + \frac{2}{5}n\pi\qquad\text{und}\qquad x = \frac{\pi}{6} + \frac{2}{5}n\pi\,,