Lösung 4.4:2a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Sprache und Formulierung)
Zeile 1: Zeile 1:
-
Wir zeichnen den Einheitskreis, und markieren alle Winkeln die die 'y''-Koordinate <math>\sqrt{3}/2</math> haben. So erhalten wir alle Lösungen der Gleichung zwischen <math>0</math> und <math>2\pi</math>.
+
Wir zeichnen den Einheitskreis und markieren alle Winkel, die die 'y''-Koordinate <math>\sqrt{3}/2</math> haben. So erhalten wir alle Lösungen der Gleichung zwischen <math>0</math> und <math>2\pi</math>.
[[Image:4_4_2_a.gif|center]]
[[Image:4_4_2_a.gif|center]]
-
Im ersten Quadrant wissen wir dass <math>x = \pi/3</math> den Sinus <math>\sqrt{3}/2</math> hat. Noch dazu hat die Spiegelung in der ''y''-Achse denselben Sinus, und also ist <math>x = \pi - \pi/3 = 2\pi/3</math> auch eine Lösung.
+
Im ersten Quadranten wissen wir, dass <math>x = \pi/3</math> den Sinus <math>\sqrt{3}/2</math> hat. Noch dazu hat die Spiegelung an der ''y''-Achse denselben Sinus, also ist <math>x = \pi - \pi/3 = 2\pi/3</math> auch eine Lösung.
-
Addieren wir einen Multipel von <math>2\pi</math> zu irgendeiner dieser Winkeln, ändert sich nicht deren Sinus.
+
Addieren wir einen Vielfaches von <math>2\pi</math> zu irgendeiner dieser Winkel, ändert sich deren Sinus nicht.
{{Abgesetzte Formel||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,,</math>}}
{{Abgesetzte Formel||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,,</math>}}
-
wo ''n'' eine beliebige ganze Zahl ist.
+
wobei ''n'' eine beliebige ganze Zahl ist.
Hinweis: Schreiben wir
Hinweis: Schreiben wir
Zeile 15: Zeile 15:
{{Abgesetzte Formel||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,\textrm{,}</math>}}
{{Abgesetzte Formel||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,\textrm{,}</math>}}
-
heißt dies dass die Gleichung für jedes ''n'' erfüllt ist, und also für die Winkeln:
+
heißt dies, dass die Gleichung für jedes ''n'' erfüllt ist, also für die Winkel
{{Abgesetzte Formel||<math>\begin{array}{llll}
{{Abgesetzte Formel||<math>\begin{array}{llll}

Version vom 14:17, 19. Jun. 2009

Wir zeichnen den Einheitskreis und markieren alle Winkel, die die 'y-Koordinate \displaystyle \sqrt{3}/2 haben. So erhalten wir alle Lösungen der Gleichung zwischen \displaystyle 0 und \displaystyle 2\pi.

Im ersten Quadranten wissen wir, dass \displaystyle x = \pi/3 den Sinus \displaystyle \sqrt{3}/2 hat. Noch dazu hat die Spiegelung an der y-Achse denselben Sinus, also ist \displaystyle x = \pi - \pi/3 = 2\pi/3 auch eine Lösung.

Addieren wir einen Vielfaches von \displaystyle 2\pi zu irgendeiner dieser Winkel, ändert sich deren Sinus nicht.

\displaystyle x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,,

wobei n eine beliebige ganze Zahl ist.

Hinweis: Schreiben wir

\displaystyle x = \frac{\pi}{3}+2n\pi\qquad\text{und}\qquad x = \frac{2\pi}{3}+2n\pi\,\textrm{,}

heißt dies, dass die Gleichung für jedes n erfüllt ist, also für die Winkel

\displaystyle \begin{array}{llll}

&n=0:\quad &x=\frac{\pi}{3}\quad &x=\frac{2\pi }{3}\\[5pt] &n=-1:\quad &x=\frac{\pi}{3}+(-1)\cdot 2\pi\quad &x=\frac{2\pi}{3}+(-1)\cdot 2\pi\\[5pt] &n=1:\quad &x=\frac{\pi}{3}+1\cdot 2\pi\quad &x=\frac{2\pi}{3}+1\cdot 2\pi\\[5pt] &n=-2:\quad &x=\frac{\pi}{3}+(-2)\cdot 2\pi\quad &x=\frac{2\pi}{3}+(-2)\cdot 2\pi\\[5pt] &n=2:\quad &x=\frac{\pi}{3}+2\cdot 2\pi\quad &x=\frac{2\pi}{3}+2\cdot 2\pi\\[5pt] &\phantom{n}\vdots &\phantom{x}\vdots &\phantom{x}\vdots \end{array}