Lösung 3.1:4a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
\end{align}</math>}}
\end{align}</math>}}
-
Hinweis: alternativ sieht man direkt dass <math>0\textrm{.}16 = 0\textrm{.}4\cdot 0\textrm{.}4 = 0\textrm{.}4^2</math>, and then that <math>\sqrt{0\textrm{.}16} = \sqrt{0\textrm{.}4^2} = 0\textrm{.}4\,\textrm{.}</math>
+
Hinweis: alternativ sieht man direkt dass <math>0\textrm{.}16 = 0\textrm{.}4\cdot 0\textrm{.}4 = 0\textrm{.}4^2</math>, und daher dass <math>\sqrt{0\textrm{.}16} = \sqrt{0\textrm{.}4^2} = 0\textrm{.}4\,\textrm{.}</math>

Version vom 21:18, 25. Mär. 2009

Die Dezimalzahl \displaystyle 0\textrm{.}16 kann auch wie \displaystyle 16\cdot 10^{-2} geschrieben werden. Nachdem \displaystyle 16 = 4\cdot 4 = 4^2 und \displaystyle 10^{-2} = (10^{-1})^2 = 0\textrm{.}1^2 haben wir,

\displaystyle \begin{align}

\sqrt{0\textrm{.}16} &= \sqrt{16\cdot 10^{-2}} = \sqrt{16}\cdot \sqrt{10^{-2}} = \sqrt{4^2}\cdot \sqrt{0\textrm{.}1^2}\\[5pt] &= 4\cdot 0\textrm{.}1 = 0\textrm{.}4\,\textrm{.} \end{align}

Hinweis: alternativ sieht man direkt dass \displaystyle 0\textrm{.}16 = 0\textrm{.}4\cdot 0\textrm{.}4 = 0\textrm{.}4^2, und daher dass \displaystyle \sqrt{0\textrm{.}16} = \sqrt{0\textrm{.}4^2} = 0\textrm{.}4\,\textrm{.}