Lösung 3.1:8d
Aus Online Mathematik Brückenkurs 1
K (hat „Solution 3.1:8d“ nach „Lösung 3.1:8d“ verschoben: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Wir schreiben die beiden Ausdrücke in Potenzform | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 9: | Zeile 9: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Obwohl <math>2^{1/2} > 2^{1/3}</math> und <math>3^1 > 3^{3/4}</math>, können wir daraus nicht bestimmen welcher Ausdruck am größten ist. Wir sehen aber dass die Exponenten 1/2, 3/4, 1/3 und 1 den gemeinsamen Nenner <math>3\cdot 4 = 12</math> haben, und wir können die Exponenten daher faktorisieren | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 20: | Zeile 20: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Jetzt vergleichen wir die Basen <math>2^6\cdot 3^9</math> und <math>2^4\cdot 3^{12}</math> um zu sehen welcher Ausdruck am größten ist. Nachdem | |
- | + | ||
- | + | ||
{{Abgesetzte Formel||<math>\frac{2^6\cdot 3^9}{2^4\cdot 3^{12}} = 2^{6-4}3^{9-12} = 2^{2}3^{-3} = \frac{2^{2}}{3^{3}} = \frac{4}{27} < 1</math>}} | {{Abgesetzte Formel||<math>\frac{2^6\cdot 3^9}{2^4\cdot 3^{12}} = 2^{6-4}3^{9-12} = 2^{2}3^{-3} = \frac{2^{2}}{3^{3}} = \frac{4}{27} < 1</math>}} | ||
- | + | der Nenner <math>2^{4}\cdot 3^{12}</math> gräßer als der Zähle <math>2^6\cdot 3^9</math> ist, ist <math>\sqrt[3]{2}\cdot 3</math> | |
- | <math>2^6\cdot 3^9</math>, | + | größer als <math>\sqrt{2}\bigl(\sqrt[4]{3}\bigr)^{3}</math>. |
- | + |
Version vom 11:22, 26. Mär. 2009
Wir schreiben die beiden Ausdrücke in Potenzform
\displaystyle \begin{align}
\sqrt{2}\bigl(\sqrt[4]{3}\bigr)^{3} &= 2^{1/2}\bigl(3^{1/4}\bigr)^{3} = 2^{1/2}3^{3/4},\\[5pt] \sqrt[3]{2}\cdot 3 &= 2^{1/3}3^{1}\,\textrm{.} \end{align} |
Obwohl \displaystyle 2^{1/2} > 2^{1/3} und \displaystyle 3^1 > 3^{3/4}, können wir daraus nicht bestimmen welcher Ausdruck am größten ist. Wir sehen aber dass die Exponenten 1/2, 3/4, 1/3 und 1 den gemeinsamen Nenner \displaystyle 3\cdot 4 = 12 haben, und wir können die Exponenten daher faktorisieren
\displaystyle \begin{align}
2^{1/2}3^{3/4} &= 2^{6/12}3^{(3\cdot 3)/12} = \bigl(2^{6}\cdot 3^{9}\bigr)^{1/12},\\[5pt] 2^{1/3}3^{1} &= 2^{4/12}3^{12/12} = \bigl(2^{4}\cdot 3^{12}\bigr)^{1/12}\,\textrm{.} \end{align} |
Jetzt vergleichen wir die Basen \displaystyle 2^6\cdot 3^9 und \displaystyle 2^4\cdot 3^{12} um zu sehen welcher Ausdruck am größten ist. Nachdem
\displaystyle \frac{2^6\cdot 3^9}{2^4\cdot 3^{12}} = 2^{6-4}3^{9-12} = 2^{2}3^{-3} = \frac{2^{2}}{3^{3}} = \frac{4}{27} < 1 |
der Nenner \displaystyle 2^{4}\cdot 3^{12} gräßer als der Zähle \displaystyle 2^6\cdot 3^9 ist, ist \displaystyle \sqrt[3]{2}\cdot 3 größer als \displaystyle \sqrt{2}\bigl(\sqrt[4]{3}\bigr)^{3}.