Lösung 4.3:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (hat „Solution 4.3:4b“ nach „Lösung 4.3:4b“ verschoben: Robot: moved page) |
Version vom 15:04, 22. Okt. 2008
If we once again use the Pythagorean identity we get
\displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.} |
Because the angle v lies between \displaystyle 0 and \displaystyle \pi, \displaystyle \sin v is positive (an angle in the first and second quadrants has a positive y-coordinate) and therefore
\displaystyle \sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.} |