Aus Online Mathematik Brückenkurs 1
			  (Unterschied zwischen Versionen)
			  			                                                      
		          
			
Version vom 14:39, 22. Okt. 2008
The logarithm \displaystyle \lg 46 satisfies the relation
|  | \displaystyle 10^{\lg 46} = 46 |  | 
and taking the natural logarithm of both sides, we obtain
|  | \displaystyle \ln 10^{\lg 46 } = \ln 46\,\textrm{.} |  | 
If we use the logarithm law, \displaystyle \lg a^b = b\cdot\lg a, on the left-hand side, the equality becomes
|  | \displaystyle \lg 46\cdot\ln 10 = \ln 46\,\textrm{.} |  | 
This shows that
|  | \displaystyle \lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots |  | 
and the answer is 1.663.
Note: In order to calculate the answer on the calculator, you press