Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 2.1:5b“ nach „Lösung 2.1:5b“ verschoben: Robot: moved page)

Version vom 13:48, 22. Okt. 2008

We can factorize the denominators as

y22yy24=y(y2)=(y2)(y+2)[difference of two squares]

and then we see that the terms' lowest common denominator is y(y2)(y+2) because it is the product that contains the smallest number of factors which contain both y(y2) and (y2)(y+2).

Now, we rewrite the fractions so that they have same denominators and start simplifying

1y22y2y24=1y(y2)y+2y+22(y2)(y+2)yy=y+2y(y2)(y+2)2y(y2)(y+2)y=y+22yy(y2)(y+2)=y+2y(y2)(y+2).

The numerator can be rewritten as y+2=(y2) and we can eliminate the common factor y2,

y+2y(y2)(y+2)=(y2)y(y2)(y+2)=1y(y+2)=1y(y+2).