Lösung 4.4:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
First, we observe from the unit circle that the equation has two solutions for <math>0^{\circ}\le 3x\le 360^{\circ}\,</math>,
First, we observe from the unit circle that the equation has two solutions for <math>0^{\circ}\le 3x\le 360^{\circ}\,</math>,
-
{{Displayed math||<math>3x = 15^{\circ}\qquad\text{and}\qquad 3x = 180^{\circ} - 15^{\circ} = 165^{\circ}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>3x = 15^{\circ}\qquad\text{and}\qquad 3x = 180^{\circ} - 15^{\circ} = 165^{\circ}\,\textrm{.}</math>}}
[[Image:4_4_3_d.gif|center]]
[[Image:4_4_3_d.gif|center]]
Zeile 7: Zeile 7:
This means that all of the equation's solutions are
This means that all of the equation's solutions are
-
{{Displayed math||<math>3x = 15^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad 3x = 165^{\circ} + n\cdot 360^{\circ}\,,</math>}}
+
{{Abgesetzte Formel||<math>3x = 15^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad 3x = 165^{\circ} + n\cdot 360^{\circ}\,,</math>}}
for all integers ''n'', i.e.
for all integers ''n'', i.e.
-
{{Displayed math||<math>x = 5^{\circ} + n\cdot 120^{\circ}\qquad\text{and}\qquad x = 55^{\circ} + n\cdot 120^{\circ}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = 5^{\circ} + n\cdot 120^{\circ}\qquad\text{and}\qquad x = 55^{\circ} + n\cdot 120^{\circ}\,\textrm{.}</math>}}

Version vom 08:59, 22. Okt. 2008

First, we observe from the unit circle that the equation has two solutions for \displaystyle 0^{\circ}\le 3x\le 360^{\circ}\,,

\displaystyle 3x = 15^{\circ}\qquad\text{and}\qquad 3x = 180^{\circ} - 15^{\circ} = 165^{\circ}\,\textrm{.}

This means that all of the equation's solutions are

\displaystyle 3x = 15^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad 3x = 165^{\circ} + n\cdot 360^{\circ}\,,

for all integers n, i.e.

\displaystyle x = 5^{\circ} + n\cdot 120^{\circ}\qquad\text{and}\qquad x = 55^{\circ} + n\cdot 120^{\circ}\,\textrm{.}