Lösung 4.4:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
We get the full solution when we add multiples of <math>2\pi</math>,
We get the full solution when we add multiples of <math>2\pi</math>,
-
{{Displayed math||<math>x = 0+2n\pi\qquad\text{and}\qquad x = \pi + 2n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>x = 0+2n\pi\qquad\text{and}\qquad x = \pi + 2n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.
Zeile 12: Zeile 12:
Note: Because the difference between <math>0</math> and <math>\pi</math> is a half turn, the solutions are repeated every half turn and they can be summarized in one expression,
Note: Because the difference between <math>0</math> and <math>\pi</math> is a half turn, the solutions are repeated every half turn and they can be summarized in one expression,
-
{{Displayed math||<math>x=0+n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>x=0+n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.

Version vom 08:58, 22. Okt. 2008

There are two angles in the unit circle, \displaystyle x=0 and \displaystyle x=\pi, whose sine has a value of zero.

We get the full solution when we add multiples of \displaystyle 2\pi,

\displaystyle x = 0+2n\pi\qquad\text{and}\qquad x = \pi + 2n\pi\,,

where n is an arbitrary integer.


Note: Because the difference between \displaystyle 0 and \displaystyle \pi is a half turn, the solutions are repeated every half turn and they can be summarized in one expression,

\displaystyle x=0+n\pi\,,

where n is an arbitrary integer.