Lösung 4.3:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we once again use the Pythagorean identity we get | If we once again use the Pythagorean identity we get | ||
- | {{ | + | {{Abgesetzte Formel||<math>\cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.}</math>}} |
Because the angle ''v'' lies between <math>0</math> and <math>\pi</math>, <math>\sin v</math> is positive (an angle in the first and second quadrants has a positive ''y''-coordinate) and therefore | Because the angle ''v'' lies between <math>0</math> and <math>\pi</math>, <math>\sin v</math> is positive (an angle in the first and second quadrants has a positive ''y''-coordinate) and therefore | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.}</math>}} |
Version vom 08:55, 22. Okt. 2008
If we once again use the Pythagorean identity we get
\displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.} |
Because the angle v lies between \displaystyle 0 and \displaystyle \pi, \displaystyle \sin v is positive (an angle in the first and second quadrants has a positive y-coordinate) and therefore
\displaystyle \sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.} |