Lösung 4.2:5d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
By subtracting 360° from 495°, we do not change the value of the tangent, | By subtracting 360° from 495°, we do not change the value of the tangent, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.}</math>}} |
We know from exercise a that <math>\cos 135^{\circ} = -1/\!\sqrt{2}</math> and <math>\sin 135^{\circ} = 1/\!\sqrt{2}\,</math>, which gives | We know from exercise a that <math>\cos 135^{\circ} = -1/\!\sqrt{2}</math> and <math>\sin 135^{\circ} = 1/\!\sqrt{2}\,</math>, which gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}} |
Version vom 08:53, 22. Okt. 2008
By subtracting 360° from 495°, we do not change the value of the tangent,
\displaystyle \tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.} |
We know from exercise a that \displaystyle \cos 135^{\circ} = -1/\!\sqrt{2} and \displaystyle \sin 135^{\circ} = 1/\!\sqrt{2}\,, which gives
\displaystyle \tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.} |