Lösung 4.2:1a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 8: | Zeile 8: | ||
In our case, this means that | In our case, this means that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tan 27^{\circ} = \frac{x}{13}</math>}} |
which gives <math>x = 13\cdot \tan 27^{\circ}\,</math>. | which gives <math>x = 13\cdot \tan 27^{\circ}\,</math>. | ||
Zeile 15: | Zeile 15: | ||
Note: Using a calculator, we can work out what ''x'' should be, | Note: Using a calculator, we can work out what ''x'' should be, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.}</math>}} |
Version vom 08:50, 22. Okt. 2008
The definition of the tangent states that
\displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}} |
In our case, this means that
\displaystyle \tan 27^{\circ} = \frac{x}{13} |
which gives \displaystyle x = 13\cdot \tan 27^{\circ}\,.
Note: Using a calculator, we can work out what x should be,
\displaystyle x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.} |