Lösung 4.1:7c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
By completing the square, we can rewrite the ''x''- and ''y''-terms as quadratic expressions,
By completing the square, we can rewrite the ''x''- and ''y''-terms as quadratic expressions,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x^2 - 2x &= (x-1)^2 - 1^2\,,\\[5pt]
x^2 - 2x &= (x-1)^2 - 1^2\,,\\[5pt]
y^2 + 6y &= (y+3)^2 - 3^2\,,
y^2 + 6y &= (y+3)^2 - 3^2\,,
Zeile 8: Zeile 8:
and the whole equation then has standard form,
and the whole equation then has standard form,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(x-1)^2 - 1 + (y+3)^2 - 9 &= -3\,,\\[5pt]
(x-1)^2 - 1 + (y+3)^2 - 9 &= -3\,,\\[5pt]
(x-1)^2 + (y+3)^2 &= 7\,\textrm{.}
(x-1)^2 + (y+3)^2 &= 7\,\textrm{.}

Version vom 08:49, 22. Okt. 2008

By completing the square, we can rewrite the x- and y-terms as quadratic expressions,

\displaystyle \begin{align}

x^2 - 2x &= (x-1)^2 - 1^2\,,\\[5pt] y^2 + 6y &= (y+3)^2 - 3^2\,, \end{align}

and the whole equation then has standard form,

\displaystyle \begin{align}

(x-1)^2 - 1 + (y+3)^2 - 9 &= -3\,,\\[5pt] (x-1)^2 + (y+3)^2 &= 7\,\textrm{.} \end{align}

From this, we see that the circle has its centre at (1,-3) and radius \displaystyle \sqrt{7}\,.


Image:4_1_7_c.gif