Lösung 3.4:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Both left- and right-hand sides are positive for all values of ''x'' and this means that we can take the logarithm of both sides and get a more manageable equation,
Both left- and right-hand sides are positive for all values of ''x'' and this means that we can take the logarithm of both sides and get a more manageable equation,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt]
\text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt]
\text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.}
\text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.}
Zeile 8: Zeile 8:
After a little rearranging, the equation becomes
After a little rearranging, the equation becomes
-
{{Displayed math||<math>x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}</math>}}
We complete the square of the left-hand side,
We complete the square of the left-hand side,
-
{{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,</math>}}
+
{{Abgesetzte Formel||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,</math>}}
and move the constant terms over to the right-hand side,
and move the constant terms over to the right-hand side,
-
{{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}</math>}}
It can be difficult to see whether the right-hand side is positive or not, but if we remember that <math>e > 2</math> and that thus <math>\ln 2 < \ln e = 1\,</math>, we must have that <math>(1/\ln 2)^{2} > 1\,</math>, i.e. the right-hand side is positive.
It can be difficult to see whether the right-hand side is positive or not, but if we remember that <math>e > 2</math> and that thus <math>\ln 2 < \ln e = 1\,</math>, we must have that <math>(1/\ln 2)^{2} > 1\,</math>, i.e. the right-hand side is positive.
Zeile 22: Zeile 22:
The equation therefore has the solutions
The equation therefore has the solutions
-
{{Displayed math||<math>x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,</math>}}
+
{{Abgesetzte Formel||<math>x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,</math>}}
which can also be written as
which can also be written as
-
{{Displayed math||<math>x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}</math>}}

Version vom 08:46, 22. Okt. 2008

Both left- and right-hand sides are positive for all values of x and this means that we can take the logarithm of both sides and get a more manageable equation,

\displaystyle \begin{align}

\text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt] \text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.} \end{align}

After a little rearranging, the equation becomes

\displaystyle x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}

We complete the square of the left-hand side,

\displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,

and move the constant terms over to the right-hand side,

\displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}

It can be difficult to see whether the right-hand side is positive or not, but if we remember that \displaystyle e > 2 and that thus \displaystyle \ln 2 < \ln e = 1\,, we must have that \displaystyle (1/\ln 2)^{2} > 1\,, i.e. the right-hand side is positive.

The equation therefore has the solutions

\displaystyle x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,

which can also be written as

\displaystyle x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}