Lösung 3.3:5e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| The argument of ln can be written as | The argument of ln can be written as | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{e^{2}} = e^{-2}</math>}} | 
| and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain | and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}} | 
Version vom 08:44, 22. Okt. 2008
The argument of ln can be written as
| \displaystyle \frac{1}{e^{2}} = e^{-2} | 
and with the logarithm law, \displaystyle \ln a^{b} = b\ln a, we obtain
| \displaystyle \ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.} | 
 
		  