Lösung 3.3:3g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as | Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}} |
Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law, | Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law, | ||
<math>\lg (ab) = \lg a + \lg b\,</math>, | <math>\lg (ab) = \lg a + \lg b\,</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\log _{3}12 - \log _{3}4 | \log _{3}12 - \log _{3}4 | ||
&= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] | &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] |
Version vom 08:43, 22. Okt. 2008
Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as
\displaystyle \log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.} |
Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,
\displaystyle \begin{align}
\log _{3}12 - \log _{3}4 &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] &= \log _{3}3\\[5pt] &= 1\,\textrm{.} \end{align} |