Lösung 3.3:3g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as  | Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as  | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}} | 
| Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law,  | Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law,  | ||
| <math>\lg (ab) = \lg a + \lg b\,</math>, | <math>\lg (ab) = \lg a + \lg b\,</math>, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \log _{3}12 - \log _{3}4 | \log _{3}12 - \log _{3}4 | ||
| &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt]  | &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt]  | ||
Version vom 08:43, 22. Okt. 2008
Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as
| \displaystyle \log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.} | 
Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,
| \displaystyle \begin{align} \log _{3}12 - \log _{3}4 &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] &= \log _{3}3\\[5pt] &= 1\,\textrm{.} \end{align} | 
 
		  