Lösung 3.3:3b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| Because we are working with <math>\log _{9}</math>, we express 1/3 as a power of 9, | Because we are working with <math>\log _{9}</math>, we express 1/3 as a power of 9, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{3} = \frac{1}{\sqrt{9}} = \frac{1}{9^{1/2}} = 9^{-1/2}\,\textrm{.}</math>}} | 
| Using the logarithm laws, we get | Using the logarithm laws, we get | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\log_9\frac{1}{3} = \log_9 9^{-1/2} = -\frac{1}{2}\cdot\log_9 9 = -\frac{1}{2}\cdot 1 = -\frac{1}{2}\,\textrm{.}</math>}} | 
Version vom 08:42, 22. Okt. 2008
Because we are working with \displaystyle \log _{9}, we express 1/3 as a power of 9,
| \displaystyle \frac{1}{3} = \frac{1}{\sqrt{9}} = \frac{1}{9^{1/2}} = 9^{-1/2}\,\textrm{.} | 
Using the logarithm laws, we get
| \displaystyle \log_9\frac{1}{3} = \log_9 9^{-1/2} = -\frac{1}{2}\cdot\log_9 9 = -\frac{1}{2}\cdot 1 = -\frac{1}{2}\,\textrm{.} | 
 
		  