Lösung 3.3:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality | The logarithm <math>\mathop{\text{lg}} 0\textrm{.}1</math> is defined as that number which should stand in the coloured box in order that the equality | ||
| - | {{ | + | {{Abgesetzte Formel||<math>10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1</math>}} | 
| should hold. In this case, we see that | should hold. In this case, we see that | ||
| - | {{ | + | {{Abgesetzte Formel||<math>10^{-1} = 0\textrm{.}1</math>}} | 
| and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>. | and therefore <math>\mathop{\text{lg}} 0\textrm{.}1 = -1\,</math>. | ||
Version vom 08:41, 22. Okt. 2008
The logarithm \displaystyle \mathop{\text{lg}} 0\textrm{.}1 is defined as that number which should stand in the coloured box in order that the equality
| \displaystyle 10^{\bbox[#FFEEAA;,1.5pt]{\phantom{\scriptstyle ??}}} = 0\textrm{.}1 | 
should hold. In this case, we see that
| \displaystyle 10^{-1} = 0\textrm{.}1 | 
and therefore \displaystyle \mathop{\text{lg}} 0\textrm{.}1 = -1\,.
 
		  