Lösung 4.4:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We see directly that
+
We see directly that <math>x = \pi/5</math> is a solution to the equation, and using the unit circle we can also draw the conclusion that <math>x = \pi - \pi/5 = 4\pi/5</math> is the only other solution between <math>0</math> and <math>2\pi\,</math>.
-
<math>x=\frac{\pi }{5}</math>
+
-
is a solution to the equation, and using the unit circle we can also draw the conclusion that
+
-
<math>x=\pi -\frac{\pi }{5}=\frac{4\pi }{5}</math>
+
-
is the only other solution between
+
-
<math>0</math>
+
-
and
+
-
<math>\text{2}\pi </math>.
+
-
 
+
[[Image:4_4_3_b.gif|center]]
[[Image:4_4_3_b.gif|center]]
-
We obtain all solutions to the equation when we add integer multiples of
+
We obtain all solutions to the equation when we add integer multiples of <math>2\pi\, </math>,
-
<math>\text{2}\pi </math>,
+
-
 
+
{{Displayed math||<math>x = \frac{\pi}{5} + 2n\pi\qquad\text{and}\qquad x = \frac{4\pi}{5} + 2n\pi\,,</math>}}
-
<math>x=\frac{\pi }{5}+2n\pi </math>
+
-
and
+
-
<math>x=\frac{4\pi }{5}+2n\pi </math>
+
-
 
+
where ''n'' is an arbitrary integer.
-
where
+
-
<math>n</math>
+
-
is an arbitrary integer.
+

Version vom 12:52, 13. Okt. 2008

We see directly that \displaystyle x = \pi/5 is a solution to the equation, and using the unit circle we can also draw the conclusion that \displaystyle x = \pi - \pi/5 = 4\pi/5 is the only other solution between \displaystyle 0 and \displaystyle 2\pi\,.

We obtain all solutions to the equation when we add integer multiples of \displaystyle 2\pi\, ,

Vorlage:Displayed math

where n is an arbitrary integer.