Lösung 4.4:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The equation
+
The equation <math>\cos x= 1/2</math> has the solution <math>x=\pi/3</math> in the first quadrant, and the symmetric solution <math>x = 2\pi -\pi/3 = 5\pi/3</math> in the fourth quadrant.
-
<math>\cos x={1}/{2}\;</math>
+
-
has the solution
+
-
<math>x={\pi }/{3}\;</math>
+
-
in the first quadrant, and the symmetric solution
+
-
<math>x={2\pi -\pi }/{3}\;={5\pi }/{3}\;</math>
+
-
in the fourth quadrant.
+
-
 
+
[[Image:4_4_2_b.gif|center]]
[[Image:4_4_2_b.gif|center]]
-
Angle
+
If we add multiples of <math>2\pi</math> to these two solutions, we obtain all the solutions
-
<math>{\pi }/{3}\;</math>
+
-
Angle
+
-
<math>{5\pi }/{3}\;</math>
+
-
 
+
-
 
+
-
If we add multiples of
+
-
<math>2\pi </math>
+
-
to these two solutions, we obtain all the solutions
+
-
 
+
-
 
+
-
<math>x={\pi }/{3}\;+2n\pi </math>
+
-
and
+
-
<math>x={5\pi }/{3}\;+2n\pi </math>
+
 +
{{Displayed math||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi }{3}+2n\pi\,,</math>}}
-
where
+
where ''n'' is an arbitrary integer.
-
<math>n</math>
+
-
is an arbitrary integer.
+

Version vom 14:22, 10. Okt. 2008

The equation \displaystyle \cos x= 1/2 has the solution \displaystyle x=\pi/3 in the first quadrant, and the symmetric solution \displaystyle x = 2\pi -\pi/3 = 5\pi/3 in the fourth quadrant.

If we add multiples of \displaystyle 2\pi to these two solutions, we obtain all the solutions

Vorlage:Displayed math

where n is an arbitrary integer.