Lösung 3.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We use the standard method and augment the fraction with the conjugate of the denominator <math>\sqrt{5}+2</math>. Then the formula for the difference of two squares gives
We use the standard method and augment the fraction with the conjugate of the denominator <math>\sqrt{5}+2</math>. Then the formula for the difference of two squares gives
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{\sqrt{2}+3}{\sqrt{5}-2}
\frac{\sqrt{2}+3}{\sqrt{5}-2}
&= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt]
&= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt]

Version vom 08:38, 22. Okt. 2008

We use the standard method and augment the fraction with the conjugate of the denominator \displaystyle \sqrt{5}+2. Then the formula for the difference of two squares gives

\displaystyle \begin{align}

\frac{\sqrt{2}+3}{\sqrt{5}-2} &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] &= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt] &= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt] &= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt] &= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.} \end{align}