Lösung 3.1:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We start by factorizing the numbers under the root sign,
We start by factorizing the numbers under the root sign,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
48 &= 2\cdot 24 = 2\cdot 2\cdot 12 = 2\cdot 2\cdot 2\cdot 6 = 2\cdot 2\cdot 2\cdot 2\cdot 3 = 2^{4}\cdot 3\,,\\
48 &= 2\cdot 24 = 2\cdot 2\cdot 12 = 2\cdot 2\cdot 2\cdot 6 = 2\cdot 2\cdot 2\cdot 2\cdot 3 = 2^{4}\cdot 3\,,\\
12 &= 2\cdot 6 = 2\cdot 2\cdot 3 = 2^{2}\cdot 3\,,\\
12 &= 2\cdot 6 = 2\cdot 2\cdot 3 = 2^{2}\cdot 3\,,\\
Zeile 10: Zeile 10:
Now, we can take the squares out from under the root signs,
Now, we can take the squares out from under the root signs,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\sqrt{48} &= \sqrt{2^4\cdot 3} = 2^2\sqrt{3} = 4\sqrt{3}\,,\\[5pt]
\sqrt{48} &= \sqrt{2^4\cdot 3} = 2^2\sqrt{3} = 4\sqrt{3}\,,\\[5pt]
\sqrt{12} &= \sqrt{2^2\cdot 3} = 2\sqrt{3},\\[5pt]
\sqrt{12} &= \sqrt{2^2\cdot 3} = 2\sqrt{3},\\[5pt]
Zeile 19: Zeile 19:
and then simplify the whole expression
and then simplify the whole expression
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\sqrt{48} + \sqrt{12} + \sqrt{3} - \sqrt{75}
\sqrt{48} + \sqrt{12} + \sqrt{3} - \sqrt{75}
&= 4\sqrt{3} + 2\sqrt{3} + \sqrt{3} - 5\sqrt{3}\\[5pt]
&= 4\sqrt{3} + 2\sqrt{3} + \sqrt{3} - 5\sqrt{3}\\[5pt]

Version vom 08:37, 22. Okt. 2008

We start by factorizing the numbers under the root sign,

\displaystyle \begin{align}

48 &= 2\cdot 24 = 2\cdot 2\cdot 12 = 2\cdot 2\cdot 2\cdot 6 = 2\cdot 2\cdot 2\cdot 2\cdot 3 = 2^{4}\cdot 3\,,\\ 12 &= 2\cdot 6 = 2\cdot 2\cdot 3 = 2^{2}\cdot 3\,,\\ 3 &= 3\,,\\ 75 &= 3\cdot 25 = 3\cdot 5\cdot 5 = 3\cdot 5^{2}\,\textrm{.} \end{align}

Now, we can take the squares out from under the root signs,

\displaystyle \begin{align}

\sqrt{48} &= \sqrt{2^4\cdot 3} = 2^2\sqrt{3} = 4\sqrt{3}\,,\\[5pt] \sqrt{12} &= \sqrt{2^2\cdot 3} = 2\sqrt{3},\\[5pt] \sqrt{3} &= \sqrt{3}\,,\\[5pt] \sqrt{75} &= \sqrt{3\cdot 5^{2}} = 5\sqrt{3}\,, \end{align}

and then simplify the whole expression

\displaystyle \begin{align}

\sqrt{48} + \sqrt{12} + \sqrt{3} - \sqrt{75} &= 4\sqrt{3} + 2\sqrt{3} + \sqrt{3} - 5\sqrt{3}\\[5pt] &= (4+2+1-5)\sqrt{3}\\[5pt] &= 2\sqrt{3}\,\textrm{.} \end{align}