Lösung 4.3:8a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that | |
- | + | ||
- | We rewrite | + | |
- | <math>\ | + | |
- | on the left-hand side as | + | |
- | <math>\frac{\sin v}{\cos v}</math>, so that | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}} | ||
If we then use the Pythagorean identity | If we then use the Pythagorean identity | ||
+ | {{Displayed math||<math>\cos^2\!v + \sin^2\!v = 1</math>}} | ||
- | + | and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is | |
- | + | ||
- | + | ||
- | and rewrite | + | |
- | <math>\ | + | |
- | in the denominator as | + | |
- | <math> | + | |
- | + | ||
- | <math>\tan ^ | + | {{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}} |
Version vom 08:16, 10. Okt. 2008
We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that
If we then use the Pythagorean identity
and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is