Lösung 4.3:8a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
+
We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that
-
 
+
-
We rewrite
+
-
<math>\text{tan }v</math>
+
-
on the left-hand side as
+
-
<math>\frac{\sin v}{\cos v}</math>, so that
+
-
 
+
-
 
+
-
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math>
+
 +
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}}
If we then use the Pythagorean identity
If we then use the Pythagorean identity
 +
{{Displayed math||<math>\cos^2\!v + \sin^2\!v = 1</math>}}
-
<math>\cos ^{2}v+\sin ^{2}v=1</math>
+
and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is
-
 
+
-
 
+
-
and rewrite
+
-
<math>\text{cos}^{\text{2}}v</math>
+
-
in the denominator as
+
-
<math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is
+
-
 
+
-
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math>
+
{{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}}

Version vom 08:16, 10. Okt. 2008

We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that

Vorlage:Displayed math

If we then use the Pythagorean identity

Vorlage:Displayed math

and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is

Vorlage:Displayed math