Lösung 4.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Because the angle
+
Because the angle <math>v</math> satisfies <math>\pi \le v\le 3\pi/2\,</math>, <math>v</math> belongs to the third quadrant in the unit circle. Furthermore, <math>\tan v = 3</math> gives that the line which corresponds to the angle
-
<math>v</math>
+
<math>v</math> has slope 3.
-
satisfies
+
-
<math>\pi \le v\le \frac{3\pi }{2}</math>,
+
-
<math>v</math>
+
-
belongs to the third quadrant in the unit circle. Furthermore,
+
-
<math>\text{tan }v=\text{3 }</math>
+
-
gives that the line which corresponds to the angle
+
-
<math>v</math>
+
-
 
+
-
<math>v</math>
+
-
has a gradient of
+
-
<math>\text{3}</math>.
+
-
 
+
[[Image:4_3_6_c1.gif|center]]
[[Image:4_3_6_c1.gif|center]]
-
slope 3
+
In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is 1 and the sides have a 3:1 ratio.
-
 
+
-
 
+
-
In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is
+
-
<math>\text{1}</math>
+
-
and the sides have a
+
-
<math>\text{3}:\text{1 }</math>
+
-
ratio.
+
[[Image:4_3_6_c2.gif|center]]
[[Image:4_3_6_c2.gif|center]]
-
If we now use Pythagoras' theorem on the triangle, we see that the horizontal side
+
If we now use the Pythagorean theorem on the triangle, we see that the horizontal side ''a'' satisfies
-
<math>\text{a}</math>
+
-
satisfies
+
-
 
+
-
 
+
-
<math>a^{2}+\left( 3a \right)^{2}=1^{2}</math>
+
-
 
+
-
 
+
-
which gives us that
+
-
 
+
-
 
+
-
<math>10a^{2}=1</math>
+
-
i.e.
+
-
<math>a=\frac{1}{\sqrt{10}}</math>
+
-
 
+
-
Thus, the angle
+
{{Displayed math||<math>a^2 + (3a)^2 = 1^2</math>}}
-
<math>v</math>'s
+
-
<math>x</math>
+
-
-coordinate is
+
-
<math>-\frac{1}{\sqrt{10}}</math>
+
-
and
+
-
<math>y</math>
+
-
-coordinate is
+
-
<math>-\frac{3}{\sqrt{10}}</math>, i.e.
+
-
<math>\cos v=--\frac{1}{\sqrt{10}}</math>
+
which gives us that <math>10a^{2}=1</math> i.e. <math>a = 1/\!\sqrt{10}\,\textrm{.}</math>
 +
Thus, the angle ''v'''s ''x''-coordinate is <math>-1/\!\sqrt{10}</math> and ''y''-coordinate is <math>-3/\!\sqrt{10}</math>, i.e.
-
<math>\sin v=-\frac{3}{\sqrt{10}}</math>
+
{{Displayed math||<math>\begin{align}
 +
\cos v &= -\frac{1}{\sqrt{10}}\,,\\[5pt]
 +
\sin v &= -\frac{3}{\sqrt{10}}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 07:48, 10. Okt. 2008

Because the angle \displaystyle v satisfies \displaystyle \pi \le v\le 3\pi/2\,, \displaystyle v belongs to the third quadrant in the unit circle. Furthermore, \displaystyle \tan v = 3 gives that the line which corresponds to the angle \displaystyle v has slope 3.

In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is 1 and the sides have a 3:1 ratio.

If we now use the Pythagorean theorem on the triangle, we see that the horizontal side a satisfies

Vorlage:Displayed math

which gives us that \displaystyle 10a^{2}=1 i.e. \displaystyle a = 1/\!\sqrt{10}\,\textrm{.}

Thus, the angle v's x-coordinate is \displaystyle -1/\!\sqrt{10} and y-coordinate is \displaystyle -3/\!\sqrt{10}, i.e.

Vorlage:Displayed math