Lösung 2.3:9a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
A point lies on the ''x''-axis if it has ''y''-coordinate 0 and we therefore look for all the points on the curve <math>y=x^{2}-1</math> where <math>y=0</math>, i.e. all points which satisfy the equation
A point lies on the ''x''-axis if it has ''y''-coordinate 0 and we therefore look for all the points on the curve <math>y=x^{2}-1</math> where <math>y=0</math>, i.e. all points which satisfy the equation
-
{{Displayed math||<math>0=x^{2}-1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>0=x^{2}-1\,\textrm{.}</math>}}
This equation has solutions <math>x=\pm 1</math>, which means that the points of intersection are <math>(-1,0)</math> and <math>(1,0)</math>.
This equation has solutions <math>x=\pm 1</math>, which means that the points of intersection are <math>(-1,0)</math> and <math>(1,0)</math>.

Version vom 08:34, 22. Okt. 2008

A point lies on the x-axis if it has y-coordinate 0 and we therefore look for all the points on the curve \displaystyle y=x^{2}-1 where \displaystyle y=0, i.e. all points which satisfy the equation

\displaystyle 0=x^{2}-1\,\textrm{.}

This equation has solutions \displaystyle x=\pm 1, which means that the points of intersection are \displaystyle (-1,0) and \displaystyle (1,0).