Lösung 4.3:4f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Using the addition formula for cosine, we can express | + | Using the addition formula for cosine, we can express <math>\cos (v-\pi/3)</math> |
- | <math>\cos | + | in terms of <math>\cos v</math> and <math>\sin v</math>, |
- | in terms of | + | |
- | <math>\ | + | |
- | and | + | |
- | <math>\ | + | |
+ | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.}</math>}} | ||
- | <math>\cos | + | Since <math>\cos v = b</math> and <math>\sin v = \sqrt{1-b^2}</math> we obtain |
- | + | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\cos \ | + |
Version vom 14:23, 9. Okt. 2008
Using the addition formula for cosine, we can express \displaystyle \cos (v-\pi/3) in terms of \displaystyle \cos v and \displaystyle \sin v,
Since \displaystyle \cos v = b and \displaystyle \sin v = \sqrt{1-b^2} we obtain