Lösung 2.3:7c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we complete the square, | If we complete the square, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,,</math>}} |
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing <math>x+\tfrac{1}{2}</math> sufficiently large. Hence, there is no maximum value. | we see on the right-hand side that we can make the expression arbitrarily large simply by choosing <math>x+\tfrac{1}{2}</math> sufficiently large. Hence, there is no maximum value. |
Version vom 08:34, 22. Okt. 2008
If we complete the square,
\displaystyle x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,, |
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing \displaystyle x+\tfrac{1}{2} sufficiently large. Hence, there is no maximum value.