Lösung 4.3:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
With the formula for double angles and the Pythagorean identity
+
With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,
-
<math>\cos ^{2}v+\sin ^{2}v=1</math>, we can express
+
-
<math>\text{cos 2}v\text{ }</math>
+
-
in terms of
+
-
<math>\text{cos }v</math>,
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]
-
& \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\
+
&= \cos^2\!v - (1-\cos^2\!v)\\[5pt]
-
& =2\cos ^{2}v-1=2b^{2}-1 \\
+
&= 2\cos^2\!v-1\\[5pt]
-
\end{align}</math>
+
&= 2b^2-1\,\textrm{.}
 +
\end{align}</math>}}

Version vom 14:16, 9. Okt. 2008

With the formula for double angles and the Pythagorean identity \displaystyle \cos^2\!v + \sin^2\!v = 1, we can express \displaystyle \cos 2v in terms of \displaystyle \cos v,

Vorlage:Displayed math