Lösung 4.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
The formula for double angles gives | The formula for double angles gives | ||
| + | {{Displayed math||<math>\sin 2v=2\sin v\cos v</math>}} | ||
| - | <math>\sin | + | and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus, |
| - | + | {{Displayed math||<math>\sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\sin 2v=2b\sqrt{1-b^ | + | |
Version vom 14:12, 9. Okt. 2008
The formula for double angles gives
and from exercise b, we have \displaystyle \sin v = \sqrt{1-b^2}\,. Thus,
