Lösung 4.2:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we draw the angle
+
If we draw the angle <math>225^{\circ} = 180^{\circ} + 45^{\circ}</math> on a unit circle, we see that it makes an angle of <math>45^{\circ}</math> with the negative ''x''-axis.
-
<math>\text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ }</math>
+
-
on a unit circle, we see that it makes an angle of
+
-
<math>\text{45}^{\circ }</math>
+
-
with the negative
+
-
<math>x</math>
+
-
-axis.
+
[[Image:4_2_5_b1.gif|center]]
[[Image:4_2_5_b1.gif|center]]
-
This means that
+
This means that <math>\tan 225^{\circ}</math>, which is the slope of the line that makes an angle of <math>45^{\circ}</math> with the positive ''x''-axis, equals <math>\tan 45^{\circ}</math>, because the line which makes an angle of <math>45^{\circ}</math> has the same slope,
-
<math>\text{tan 225}^{\circ }</math>, which is the gradient of the line that makes an angle of
+
-
<math>\text{45}^{\circ }</math>
+
-
with the positive
+
-
<math>x</math>
+
-
-axis, equals
+
-
<math>\text{tan 225}^{\circ }</math>, because the line which makes an angle of
+
-
<math>\text{45}^{\circ }</math>
+
-
has the same slope:
+
-
 
+
-
 
+
-
<math>\tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1</math>
+
-
 
+
 +
{{Displayed math||<math>\tan 225^{\circ} = \tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1\,\textrm{.}</math>}}
[[Image:4_2_5_b2.gif|center]]
[[Image:4_2_5_b2.gif|center]]

Version vom 11:08, 9. Okt. 2008

If we draw the angle \displaystyle 225^{\circ} = 180^{\circ} + 45^{\circ} on a unit circle, we see that it makes an angle of \displaystyle 45^{\circ} with the negative x-axis.

This means that \displaystyle \tan 225^{\circ}, which is the slope of the line that makes an angle of \displaystyle 45^{\circ} with the positive x-axis, equals \displaystyle \tan 45^{\circ}, because the line which makes an angle of \displaystyle 45^{\circ} has the same slope,

Vorlage:Displayed math