Lösung 2.3:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The equation can be written in normalized form (i.e. the coefficient in front of ''x''² is 1) by dividing both sides by 4,
The equation can be written in normalized form (i.e. the coefficient in front of ''x''² is 1) by dividing both sides by 4,
-
{{Displayed math||<math>x^{2}-7x+\frac{13}{4}=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}-7x+\frac{13}{4}=0\,\textrm{.}</math>}}
Complete the square on the left-hand side,
Complete the square on the left-hand side,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x^{2}-7x+\frac{13}{4}
x^{2}-7x+\frac{13}{4}
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \Bigl(\frac{7}{2}\Bigr)^{2} + \frac{13}{4}\\[5pt]
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \Bigl(\frac{7}{2}\Bigr)^{2} + \frac{13}{4}\\[5pt]
Zeile 15: Zeile 15:
The equation can therefore be written as
The equation can therefore be written as
-
{{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^{2} - 9 = 0\,,</math>}}
+
{{Abgesetzte Formel||<math>\Bigl(x-\frac{7}{2}\Bigr)^{2} - 9 = 0\,,</math>}}
and taking the square root gives the solutions as
and taking the square root gives the solutions as

Version vom 08:32, 22. Okt. 2008

The equation can be written in normalized form (i.e. the coefficient in front of x² is 1) by dividing both sides by 4,

\displaystyle x^{2}-7x+\frac{13}{4}=0\,\textrm{.}

Complete the square on the left-hand side,

\displaystyle \begin{align}

x^{2}-7x+\frac{13}{4} &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \Bigl(\frac{7}{2}\Bigr)^{2} + \frac{13}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{49}{4} + \frac{13}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{36}{4}\\[5pt] &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - 9\,\textrm{.} \end{align}

The equation can therefore be written as

\displaystyle \Bigl(x-\frac{7}{2}\Bigr)^{2} - 9 = 0\,,

and taking the square root gives the solutions as

  • \displaystyle x-\frac{7}{2}=\sqrt{9}=3\,,\quad i.e. \displaystyle x=\frac{7}{2}+3=\frac{13}{2},
  • \displaystyle x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad i.e. \displaystyle x=\frac{7}{2}-3=\frac{1}{2}.

As an extra check, we substitute x = 1/2 and x = 13/2 into the equation:

  • x = 1/2: \displaystyle \ \text{LHS} = 4\cdot\bigl(\tfrac{1}{2}\bigr)^{2} - 28\cdot\tfrac{1}{2}+13 = 4\cdot\tfrac{1}{4}-14+13 = \text{RHS,}
  • x = 13/2: \displaystyle \ \text{LHS} = 4\cdot\bigl(\tfrac{13}{2}\bigr)^{2} - 28\cdot\tfrac{13}{2}+13 = 4\cdot\tfrac{169}{4} - 14\cdot 13 + 13 = \text{RHS.}