Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K |
||
Zeile 25: | Zeile 25: | ||
As an extra check, we substitute ''x'' = 1/2 and ''x'' = 13/2 into the equation: | As an extra check, we substitute ''x'' = 1/2 and ''x'' = 13/2 into the equation: | ||
- | :*''x'' = 1/2: <math>\ \text{LHS} = 4\cdot\ | + | :*''x'' = 1/2: <math>\ \text{LHS} = 4\cdot\bigl(\tfrac{1}{2}\bigr)^{2} - 28\cdot\tfrac{1}{2}+13 = 4\cdot\tfrac{1}{4}-14+13 = \text{RHS,}</math> |
- | :*''x'' = 13/2: <math>\ \text{LHS} = 4\cdot\ | + | :*''x'' = 13/2: <math>\ \text{LHS} = 4\cdot\bigl(\tfrac{13}{2}\bigr)^{2} - 28\cdot\tfrac{13}{2}+13 = 4\cdot\tfrac{169}{4} - 14\cdot 13 + 13 = \text{RHS.}</math> |
Version vom 07:57, 29. Sep. 2008
The equation can be written in normalized form (i.e. the coefficient in front of x² is 1) by dividing both sides by 4,
Complete the square on the left-hand side,
The equation can therefore be written as
and taking the square root gives the solutions as
- \displaystyle x-\frac{7}{2}=\sqrt{9}=3\,,\quad i.e. \displaystyle x=\frac{7}{2}+3=\frac{13}{2},
- \displaystyle x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad i.e. \displaystyle x=\frac{7}{2}-3=\frac{1}{2}.
As an extra check, we substitute x = 1/2 and x = 13/2 into the equation:
- x = 1/2: \displaystyle \ \text{LHS} = 4\cdot\bigl(\tfrac{1}{2}\bigr)^{2} - 28\cdot\tfrac{1}{2}+13 = 4\cdot\tfrac{1}{4}-14+13 = \text{RHS,}
- x = 13/2: \displaystyle \ \text{LHS} = 4\cdot\bigl(\tfrac{13}{2}\bigr)^{2} - 28\cdot\tfrac{13}{2}+13 = 4\cdot\tfrac{169}{4} - 14\cdot 13 + 13 = \text{RHS.}