Lösung 2.3:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We start by completing the square of the left-hand side,
We start by completing the square of the left-hand side,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
y^{2}+3y+4 &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2}+4\\[5pt]
y^{2}+3y+4 &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2}+4\\[5pt]
&= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \frac{9}{4} + \frac{16}{4}\\[5pt]
&= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \frac{9}{4} + \frac{16}{4}\\[5pt]
Zeile 9: Zeile 9:
The equation is then
The equation is then
-
{{Displayed math||<math>\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0\,\textrm{.}</math>}}
The first term <math>\bigl(y+\tfrac{3}{2}\bigr)^{2}</math> is always greater than or equal to zero because it is a square and <math>\tfrac{7}{4}</math> is a positive number. This means that the left hand side cannot be zero, regardless of how ''y'' is chosen. The equation has no solution.
The first term <math>\bigl(y+\tfrac{3}{2}\bigr)^{2}</math> is always greater than or equal to zero because it is a square and <math>\tfrac{7}{4}</math> is a positive number. This means that the left hand side cannot be zero, regardless of how ''y'' is chosen. The equation has no solution.

Version vom 08:31, 22. Okt. 2008

We start by completing the square of the left-hand side,

\displaystyle \begin{align}

y^{2}+3y+4 &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \Bigl(\frac{3}{2}\Bigr)^{2}+4\\[5pt] &= \Bigl(y+\frac{3}{2}\Bigr)^{2} - \frac{9}{4} + \frac{16}{4}\\[5pt] &= \Bigl(y+\frac{3}{2}\Bigr)^{2} + \frac{7}{4}\,\textrm{.} \end{align}

The equation is then

\displaystyle \left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0\,\textrm{.}

The first term \displaystyle \bigl(y+\tfrac{3}{2}\bigr)^{2} is always greater than or equal to zero because it is a square and \displaystyle \tfrac{7}{4} is a positive number. This means that the left hand side cannot be zero, regardless of how y is chosen. The equation has no solution.