Lösung 4.2:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The angle
+
The angle <math>2\pi</math> corresponds to a whole revolution and therefore we see that if we draw in a line with angle <math>2\pi</math> relative to the positive ''x''-axis, we will get the positive ''x''-axis.
-
<math>\text{2}\pi </math>
+
-
corresponds to a whole revolution and therefore we see that if we draw in a line with angle
+
-
<math>\text{2}\pi </math>
+
-
relative to the positive
+
-
<math>x</math>
+
-
-axis, we will get the positive
+
-
<math>x</math>
+
-
-axis.
+
[[Image:4_2_3_b.gif|center]]
[[Image:4_2_3_b.gif|center]]
-
Because
+
Because <math>\cos 2\pi</math> is the ''x''-coordinate for the point of intersection between the line with angle <math>2\pi</math> and the unit circle, we can see directly that <math>\cos 2\pi = 1\,</math>.
-
<math>\cos \text{2}\pi </math>
+
-
is the
+
-
<math>x</math>
+
-
-coordinate for the point of intersection between the line with angle
+
-
<math>\text{2}\pi </math>
+
-
and the unit circle, we can see directly that
+
-
<math>\cos \text{2}\pi =1</math>.
+

Version vom 07:48, 9. Okt. 2008

The angle \displaystyle 2\pi corresponds to a whole revolution and therefore we see that if we draw in a line with angle \displaystyle 2\pi relative to the positive x-axis, we will get the positive x-axis.

Because \displaystyle \cos 2\pi is the x-coordinate for the point of intersection between the line with angle \displaystyle 2\pi and the unit circle, we can see directly that \displaystyle \cos 2\pi = 1\,.