Lösung 4.2:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
[[Image:4_2_2_b.gif|center]]
+
In this right-angled triangle, the opposite and the hypotenuse are given. This means that we can directly set up a relation for the sine of the angle ''v'',
-
In this right-angled triangle, the opposite and the hypotenuse are given. This means that we can directly set up a relation for the sine of the angle
+
{| width="100%"
-
<math>v</math>,
+
|width="50%" align="center"|<math>\sin v = \frac{70}{110}\,\textrm{.}</math>
-
 
+
|width="50%" align="center"|[[Image:4_2_2_b.gif]]
-
 
+
|}
-
<math>\text{sin }v\text{ }=\text{ }{70}/{110}\;</math>.
+
-
+
The right-hand side in this equation can be simplified, so that we get
The right-hand side in this equation can be simplified, so that we get
-
 
+
{{Displayed math||<math>\sin v = \frac{7}{11}\,\textrm{.}</math>}}
-
<math>\text{sin }v\text{ }=\text{ }{7}/{11}\;</math>.
+

Version vom 14:29, 8. Okt. 2008

In this right-angled triangle, the opposite and the hypotenuse are given. This means that we can directly set up a relation for the sine of the angle v,

\displaystyle \sin v = \frac{70}{110}\,\textrm{.} Image:4_2_2_b.gif

The right-hand side in this equation can be simplified, so that we get

Vorlage:Displayed math