Lösung 4.2:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
 +
The side marked ''x'' is the hypotenuse in the right-angled triangle and the side of length 16 is the adjacent to the angle of 20°.
 +
[[Image:4_2_1_d.gif|center]]
[[Image:4_2_1_d.gif|center]]
-
The side marked
+
By writing the quotient for <math>\cos 20^{\circ}</math>, we obtain the relation
-
<math>x</math>
+
-
is the hypotenuse in the right-angled triangle and the side of length
+
-
<math>\text{16}</math>
+
-
is the adjacent to the angle of
+
-
<math>\text{2}0^{\circ }</math>.
+
-
 
+
-
 
+
-
By writing the quotient for
+
-
<math>\text{cos20}^{\circ }</math>, we obtain the relation
+
-
 
+
-
 
+
-
<math>\text{cos20}^{\circ }=\frac{16}{x}</math>
+
 +
{{Displayed math||<math>\cos 20^{\circ} = \frac{16}{x}</math>}}
and this gives
and this gives
-
 
+
{{Displayed math||<math>x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.}</math>}}
-
<math>x=\frac{16}{\text{cos20}^{\circ }}\quad \left( \approx 17.0 \right).</math>
+

Version vom 14:10, 8. Okt. 2008

The side marked x is the hypotenuse in the right-angled triangle and the side of length 16 is the adjacent to the angle of 20°.

By writing the quotient for \displaystyle \cos 20^{\circ}, we obtain the relation

Vorlage:Displayed math

and this gives

Vorlage:Displayed math