Lösung 4.1:2
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we use the mnemonic that one turn is | + | If we use the mnemonic that one turn is 360° or <math>2\pi</math> radians, we can derive a formula for the transformation from degrees to radians. Because |
- | + | ||
- | or | + | |
- | <math> | + | |
- | radians, we can derive a formula for the transformation from degrees to radians. Because | + | |
- | + | {{Displayed math||<math>360\cdot 1^{\circ } = 2\pi\ \text{radians}</math>}} | |
- | <math>360 | + | |
- | + | ||
this gives | this gives | ||
- | + | {{Displayed math||<math>1^{\circ} = \frac{2\pi}{360}\ \text{radians} = \frac{\pi}{180}\ \text{radians.}</math>}} | |
- | <math>1^{\circ }=\frac{2\pi }{360} | + | |
- | radians | + | |
- | + | ||
- | + | ||
Now we can start transforming the angles: | Now we can start transforming the angles: | ||
- | a) | ||
- | <math>45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180}</math> | ||
- | radians | ||
- | <math>=\frac{\pi }{4}</math> | ||
- | radians | ||
- | |||
- | b) | ||
- | <math>135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180}</math> | ||
- | radians | ||
- | <math>=\frac{3\pi }{4}</math> | ||
- | radians | ||
- | |||
- | c) | ||
- | <math>-63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180}</math> | ||
- | radians | ||
- | <math>=-\frac{7\pi }{20}</math> | ||
- | radians | ||
- | + | {| | |
- | <math> | + | ||a) |
- | radians | + | |width="100%"|<math>45^{\circ} = 45\cdot 1^{\circ} = 45\cdot\frac{\pi}{180}\ \text{radians} = \frac{\pi}{4}\ \text{radians,}</math> |
- | <math>=\frac{3\pi }{2}</math> | + | |- |
- | + | |height="10px"| | |
+ | |- | ||
+ | ||b) | ||
+ | |width="100%"|<math>135^{\circ } = 135\cdot 1^{\circ} = 135\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}</math> | ||
+ | |- | ||
+ | |height="10px"| | ||
+ | |- | ||
+ | ||c) | ||
+ | |width="100%"|<math>-63^{\circ} = -63\cdot 1^{\circ} = -63\cdot\frac{\pi}{180}\ \text{radians} = -\frac{7\pi}{20}\ \text{radians,}</math> | ||
+ | |- | ||
+ | |height="10px"| | ||
+ | |- | ||
+ | ||d) | ||
+ | |width="100%"|<math>270^{\circ} = 270\cdot 1^{\circ} = 270\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{2}\ \text{radians.}</math> | ||
+ | |} |
Version vom 07:59, 3. Okt. 2008
If we use the mnemonic that one turn is 360° or \displaystyle 2\pi radians, we can derive a formula for the transformation from degrees to radians. Because
this gives
Now we can start transforming the angles:
a) | \displaystyle 45^{\circ} = 45\cdot 1^{\circ} = 45\cdot\frac{\pi}{180}\ \text{radians} = \frac{\pi}{4}\ \text{radians,} |
b) | \displaystyle 135^{\circ } = 135\cdot 1^{\circ} = 135\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} |
c) | \displaystyle -63^{\circ} = -63\cdot 1^{\circ} = -63\cdot\frac{\pi}{180}\ \text{radians} = -\frac{7\pi}{20}\ \text{radians,} |
d) | \displaystyle 270^{\circ} = 270\cdot 1^{\circ} = 270\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{2}\ \text{radians.} |