Lösung 4.1:2

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we use the mnemonic that one turn is
+
If we use the mnemonic that one turn is 360° or <math>2\pi</math> radians, we can derive a formula for the transformation from degrees to radians. Because
-
<math>360^{\circ }</math>
+
-
or
+
-
<math>\text{2}\pi </math>
+
-
radians, we can derive a formula for the transformation from degrees to radians. Because
+
-
 
+
{{Displayed math||<math>360\cdot 1^{\circ } = 2\pi\ \text{radians}</math>}}
-
<math>360^{\circ }\centerdot 1^{\circ }=2\pi </math>
+
-
radians
+
this gives
this gives
-
 
+
{{Displayed math||<math>1^{\circ} = \frac{2\pi}{360}\ \text{radians} = \frac{\pi}{180}\ \text{radians.}</math>}}
-
<math>1^{\circ }=\frac{2\pi }{360}</math>
+
-
radians
+
-
<math>=\frac{\pi }{180}</math>
+
-
radians
+
Now we can start transforming the angles:
Now we can start transforming the angles:
-
a)
 
-
<math>45^{\circ }=45\centerdot 1^{\circ }=45\centerdot \frac{\pi }{180}</math>
 
-
radians
 
-
<math>=\frac{\pi }{4}</math>
 
-
radians
 
- 
-
b)
 
-
<math>135^{\circ }=135\centerdot 1^{\circ }=135\centerdot \frac{\pi }{180}</math>
 
-
radians
 
-
<math>=\frac{3\pi }{4}</math>
 
-
radians
 
- 
-
c)
 
-
<math>-63^{\circ }=-63\centerdot 1^{\circ }=-63\centerdot \frac{\pi }{180}</math>
 
-
radians
 
-
<math>=-\frac{7\pi }{20}</math>
 
-
radians
 
-
d)
+
{|
-
<math>270^{\circ }=270\centerdot 1^{\circ }=270\centerdot \frac{\pi }{180}</math>
+
||a)&nbsp;&nbsp;
-
radians
+
|width="100%"|<math>45^{\circ} = 45\cdot 1^{\circ} = 45\cdot\frac{\pi}{180}\ \text{radians} = \frac{\pi}{4}\ \text{radians,}</math>
-
<math>=\frac{3\pi }{2}</math>
+
|-
-
radians
+
|height="10px"|&nbsp;
 +
|-
 +
||b)&nbsp;&nbsp;
 +
|width="100%"|<math>135^{\circ } = 135\cdot 1^{\circ} = 135\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}</math>
 +
|-
 +
|height="10px"|&nbsp;
 +
|-
 +
||c)&nbsp;&nbsp;
 +
|width="100%"|<math>-63^{\circ} = -63\cdot 1^{\circ} = -63\cdot\frac{\pi}{180}\ \text{radians} = -\frac{7\pi}{20}\ \text{radians,}</math>
 +
|-
 +
|height="10px"|&nbsp;
 +
|-
 +
||d)
 +
|width="100%"|<math>270^{\circ} = 270\cdot 1^{\circ} = 270\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{2}\ \text{radians.}</math>
 +
|}

Version vom 07:59, 3. Okt. 2008

If we use the mnemonic that one turn is 360° or \displaystyle 2\pi radians, we can derive a formula for the transformation from degrees to radians. Because

Vorlage:Displayed math

this gives

Vorlage:Displayed math

Now we can start transforming the angles:


a)   \displaystyle 45^{\circ} = 45\cdot 1^{\circ} = 45\cdot\frac{\pi}{180}\ \text{radians} = \frac{\pi}{4}\ \text{radians,}
 
b)   \displaystyle 135^{\circ } = 135\cdot 1^{\circ} = 135\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}
 
c)   \displaystyle -63^{\circ} = -63\cdot 1^{\circ} = -63\cdot\frac{\pi}{180}\ \text{radians} = -\frac{7\pi}{20}\ \text{radians,}
 
d) \displaystyle 270^{\circ} = 270\cdot 1^{\circ} = 270\cdot\frac{\pi}{180}\ \text{radians} = \frac{3\pi}{2}\ \text{radians.}