Lösung 2.3:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The first step when we solve the second-degree equation is to complete the square on the left-hand side
The first step when we solve the second-degree equation is to complete the square on the left-hand side
-
{{Displayed math||<math>y^{2}+2y-15 = (y+1)^{2}-1^{2}-15 = (y+1)^{2}-16\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>y^{2}+2y-15 = (y+1)^{2}-1^{2}-15 = (y+1)^{2}-16\,\textrm{.}</math>}}
The equation can now be written as
The equation can now be written as
-
{{Displayed math||<math>(y+1)^{2} = 16</math>}}
+
{{Abgesetzte Formel||<math>(y+1)^{2} = 16</math>}}
and has, after taking the square root, the solutions:
and has, after taking the square root, the solutions:

Version vom 08:31, 22. Okt. 2008

The first step when we solve the second-degree equation is to complete the square on the left-hand side

\displaystyle y^{2}+2y-15 = (y+1)^{2}-1^{2}-15 = (y+1)^{2}-16\,\textrm{.}

The equation can now be written as

\displaystyle (y+1)^{2} = 16

and has, after taking the square root, the solutions:

  • \displaystyle y+1 = \sqrt{16} = 4\,\textrm{,}\ which gives \displaystyle y=-1+4=3\,\textrm{,}
  • \displaystyle y+1 = -\sqrt{16} = -4\,\textrm{,}\ which gives \displaystyle y=-1-4=-5\,\textrm{.}


A quick check shows that \displaystyle y=-5 and \displaystyle y=3 satisfy the equation:

  • y = -5: \displaystyle \ \text{LHS} = (-5)^{2} + 2\cdot (-5)-15 = 25-10-15 = 0 = \text{RHS,}
  • y = 3: \displaystyle \ \text{LHS} = 3^{2} + 2\cdot 3 - 15 = 9+6-15 = 0 = \text{RHS.}