Lösung 2.3:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we consider the rule
If we consider the rule
-
{{Displayed math||<math>(x-a)^{2} = x^{2}-2ax+a^{2}</math>}}
+
{{Abgesetzte Formel||<math>(x-a)^{2} = x^{2}-2ax+a^{2}</math>}}
and move <math>a^{2}</math> over to the left-hand side, we obtain the formula
and move <math>a^{2}</math> over to the left-hand side, we obtain the formula
-
{{Displayed math||<math>(x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>(x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}</math>}}
With the help of this formula, we can rewrite (complete the square of) a mixed expression <math>x^{2}-2ax</math> to a obtain a quadratic expression, <math>(x-a)^{2}-a^{2}</math>.
With the help of this formula, we can rewrite (complete the square of) a mixed expression <math>x^{2}-2ax</math> to a obtain a quadratic expression, <math>(x-a)^{2}-a^{2}</math>.
Zeile 11: Zeile 11:
The expression <math>x^{2}-2x</math> corresponds to <math>a=1</math> in the formula above and thus
The expression <math>x^{2}-2x</math> corresponds to <math>a=1</math> in the formula above and thus
-
{{Displayed math||<math>x^{2}-2x = (x-1)^{2}-1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}-2x = (x-1)^{2}-1\,\textrm{.}</math>}}

Version vom 08:30, 22. Okt. 2008

If we consider the rule

\displaystyle (x-a)^{2} = x^{2}-2ax+a^{2}

and move \displaystyle a^{2} over to the left-hand side, we obtain the formula

\displaystyle (x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}

With the help of this formula, we can rewrite (complete the square of) a mixed expression \displaystyle x^{2}-2ax to a obtain a quadratic expression, \displaystyle (x-a)^{2}-a^{2}.

The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus

\displaystyle x^{2}-2x = (x-1)^{2}-1\,\textrm{.}