Lösung 3.3:6b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The logarithm | + | The logarithm <math>\lg 46</math> satisfies the relation |
- | <math>\ | + | |
- | satisfies the relation | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>10^{\lg 46} = 46</math>}} | ||
and taking the natural logarithm of both sides, we obtain | and taking the natural logarithm of both sides, we obtain | ||
+ | {{Displayed math||<math>\ln 10^{\lg 46 } = \ln 46\,\textrm{.}</math>}} | ||
- | + | If we use the logarithm law, <math>\lg a^b = b\cdot\lg a</math>, on the left-hand side, the equality becomes | |
- | + | ||
- | + | ||
- | If we use the logarithm law, | + | |
- | <math>\lg a^ | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\lg 46\cdot\ln 10 = \ln 46\,\textrm{.}</math>}} | ||
This shows that | This shows that | ||
+ | {{Displayed math||<math>\lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots</math>}} | ||
- | + | and the answer is 1.663. | |
- | + | ||
- | + | ||
- | and the answer is | + | |
- | + | ||
- | NOTE: In order to calculate the answer on a calculator, you press | ||
+ | Note: In order to calculate the answer on the calculator, you press | ||
- | < | + | <center> |
- | & | + | {| |
- | & | + | || |
- | + | {| border="1" cellpadding="3" cellspacing="0" | |
+ | |width="30px" align="center"|4 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|6 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|÷ | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|1 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|0 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|= | ||
+ | |} | ||
+ | |} | ||
+ | </center> |
Version vom 07:59, 2. Okt. 2008
The logarithm \displaystyle \lg 46 satisfies the relation
and taking the natural logarithm of both sides, we obtain
If we use the logarithm law, \displaystyle \lg a^b = b\cdot\lg a, on the left-hand side, the equality becomes
This shows that
and the answer is 1.663.
Note: In order to calculate the answer on the calculator, you press
|
|
|
|
|
|
|
|