Lösung 3.3:5e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
The argument of ln can be written as | The argument of ln can be written as | ||
| + | {{Displayed math||<math>\frac{1}{e^{2}} = e^{-2}</math>}} | ||
| - | <math>\ | + | and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain |
| - | + | {{Displayed math||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\ln \frac{1}{e^{2}}=\ln e^{-2}= | + | |
Version vom 07:33, 2. Okt. 2008
The argument of ln can be written as
and with the logarithm law, \displaystyle \ln a^{b} = b\ln a, we obtain
