Lösung 3.3:3g

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Using the logarithm law,
+
Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as
-
<math>\lg a-\lg b=\lg \left( \frac{a}{b} \right)</math>, the expression can be calculated as
+
 +
{{Displayed math||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}}
-
<math>\log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1</math>
+
Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law,
 +
<math>\lg (ab) = \lg a + \lg b\,</math>,
-
 
+
{{Displayed math||<math>\begin{align}
-
Another way is to write
+
\log _{3}12 - \log _{3}4
-
<math>\text{12}=\text{3}\centerdot \text{4 }</math>
+
&= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt]
-
and use the logarithm law,
+
&= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt]
-
<math>\lg \left( ab \right)=\lg a+\lg b</math>,
+
&= \log _{3}3\\[5pt]
-
 
+
&= 1\,\textrm{.}
-
 
+
\end{align}</math>}}
-
<math>\begin{align}
+
-
& \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\
+
-
& =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\
+
-
\end{align}</math>
+

Version vom 07:00, 2. Okt. 2008

Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as

Vorlage:Displayed math

Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,

Vorlage:Displayed math