Lösung 3.3:3g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Using the logarithm law, | + | Using the logarithm law, <math>\lg a-\lg b = \lg\frac{a}{b}\,</math>, the expression can be calculated as |
- | <math>\lg a-\lg b=\lg | + | |
+ | {{Displayed math||<math>\log_3 12 - \log_3 4 = \log_3\frac{12}{4} = \log _3 3 = 1\,\textrm{.}</math>}} | ||
- | <math> | + | Another way is to write <math>12 = 3\cdot 4</math> and use the logarithm law, |
+ | <math>\lg (ab) = \lg a + \lg b\,</math>, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \log _{3}12 - \log _{3}4 | |
- | + | &= \log_{3}(3\cdot 4) - \log_{3} 4\\[5pt] | |
- | + | &= \log_{3}3 + \log _{3}4 - \log _{3}4\\[5pt] | |
- | + | &= \log _{3}3\\[5pt] | |
- | + | &= 1\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | <math>\begin{align} | + | |
- | + | ||
- | & =\ | + | |
- | \end{align}</math> | + |
Version vom 07:00, 2. Okt. 2008
Using the logarithm law, \displaystyle \lg a-\lg b = \lg\frac{a}{b}\,, the expression can be calculated as
Another way is to write \displaystyle 12 = 3\cdot 4 and use the logarithm law, \displaystyle \lg (ab) = \lg a + \lg b\,,