Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | We write the argument of | + | We write the argument of <math>\log_{3}</math> as a power of 3, |
- | <math>\ | + | |
- | as a power of | + | |
- | + | ||
+ | {{Displayed math||<math>9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,,</math>}} | ||
- | + | and then simplify the expression with the logarithm laws | |
- | + | {{Displayed math||<math>\log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | <math>\log | + |
Version vom 06:36, 2. Okt. 2008
We write the argument of \displaystyle \log_{3} as a power of 3,
and then simplify the expression with the logarithm laws