Lösung 3.3:2h

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The argument in the logarithm can be rewritten as
+
The argument in the logarithm can be rewritten as <math>\frac{1}{10^{2}} = 10^{-2}</math> and then the log law <math>\lg a^b = b\lg a</math> gives the rest
-
<math>\frac{1}{10^{2}}=10^{-2}</math>
+
-
and then the log law
+
-
<math>\lg a^{b}=b\lg a</math>
+
-
gives the rest:
+
-
 
+
{{Displayed math||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}}
-
<math>\lg \frac{1}{10^{2}}=\lg 10^{-2}=\left( -2 \right)\centerdot \lg 10=\left( -2 \right)\centerdot 1=-2</math>
+

Version vom 06:22, 2. Okt. 2008

The argument in the logarithm can be rewritten as \displaystyle \frac{1}{10^{2}} = 10^{-2} and then the log law \displaystyle \lg a^b = b\lg a gives the rest

Vorlage:Displayed math