Lösung 2.1:7a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we multiply the top and bottom of the first fraction by <math>x+5</math> and the second by <math>x+3</math>, then they will both have the same denominator and we can work out the expression by subtracting the numerators
If we multiply the top and bottom of the first fraction by <math>x+5</math> and the second by <math>x+3</math>, then they will both have the same denominator and we can work out the expression by subtracting the numerators
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{2}{x+3}-\frac{2}{x+5} &= \frac{2}{x+3}\cdot \frac{x+5}{x+5}-\frac{2}{x+5}\cdot \frac{x+3}{x+3}\\[7pt]
\frac{2}{x+3}-\frac{2}{x+5} &= \frac{2}{x+3}\cdot \frac{x+5}{x+5}-\frac{2}{x+5}\cdot \frac{x+3}{x+3}\\[7pt]
&= \frac{2(x+5)-2(x+3)}{(x+3)(x+5)}\\[5pt]
&= \frac{2(x+5)-2(x+3)}{(x+3)(x+5)}\\[5pt]

Version vom 08:25, 22. Okt. 2008

If we multiply the top and bottom of the first fraction by \displaystyle x+5 and the second by \displaystyle x+3, then they will both have the same denominator and we can work out the expression by subtracting the numerators

\displaystyle \begin{align}

\frac{2}{x+3}-\frac{2}{x+5} &= \frac{2}{x+3}\cdot \frac{x+5}{x+5}-\frac{2}{x+5}\cdot \frac{x+3}{x+3}\\[7pt] &= \frac{2(x+5)-2(x+3)}{(x+3)(x+5)}\\[5pt] &= \frac{2x+10-2x-6}{(x+3)(x+5)}\\[5pt] &= \frac{4}{(x+3)(x+5)}\,\textrm{.} \end{align}