Lösung 3.1:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The expression is so complicated that we first need to simplify it. We start with the three fractions,
+
The expression is so complicated that we first need to simplify it. We start with the three fractions, <math>1/\!\sqrt{3}</math>, <math>1/\!\sqrt{5}</math> and <math>1/\!\sqrt{2}</math>, which contain root signs and multiply their numerators and denominators in such a way that the root signs end up only in the numerators
-
<math>\frac{1}{\sqrt{3}},\quad \frac{1}{\sqrt{5}}</math>
+
-
and
+
-
<math>\frac{1}{\sqrt{2}}</math>, which contain root signs and multiply their numerators and denominators in such a way that the root signs end up only in the numerators:
+
 +
{{Displayed math||<math>\frac{\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}}{\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}} = \frac{\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}\cdot\dfrac{\sqrt{5}}{\sqrt{5}}}{\dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{2}}{\sqrt{2}}-\dfrac{1}{2}} = \frac{\dfrac{\sqrt{3}}{3}-\dfrac{\sqrt{5}}{5}}{\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}}\,\textrm{.}</math>}}
-
<math>\frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{1}{\sqrt{3}}\centerdot \frac{\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{5}}\centerdot \frac{\sqrt{5}}{\sqrt{5}}}{\frac{1}{\sqrt{2}}\centerdot \frac{\sqrt{2}}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}-\frac{1}{2}}</math>
+
Then, multiply the top and bottom of the fraction by 2 so that we get rid of the fractions in the denominator
-
 
+
-
 
+
-
Then, multiply the top and bottom of the fraction by
+
-
<math>\text{2}</math>
+
-
so that we get rid of the fractions in the denominator:
+
-
 
+
-
 
+
-
<math>\frac{\left( \frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5} \right)\centerdot 2}{\left( \frac{\sqrt{2}}{2}-\frac{1}{2} \right)\centerdot 2}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\frac{2\sqrt{2}}{2}-\frac{2}{2}}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}</math>
+
 +
{{Displayed math||<math>\frac{\Bigl(\dfrac{\sqrt{3}}{3}-\dfrac{\sqrt{5}}{5}\Bigr)\cdot 2}{\Bigl(\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\Bigr)\cdot 2} = \frac{\dfrac{2\sqrt{3}}{3}-\dfrac{2\sqrt{5}}{5}}{\dfrac{2\sqrt{2}}{2}-\dfrac{2}{2}} = \frac{\dfrac{2\sqrt{3}}{3}-\dfrac{2\sqrt{5}}{5}}{\sqrt{2}-1}\,\textrm{.}</math>}}
Now, we can multiply the top and bottom by the conjugate of the denominator
Now, we can multiply the top and bottom by the conjugate of the denominator
<math>\sqrt{2}+1</math>, to get an expression without roots in the denominator.
<math>\sqrt{2}+1</math>, to get an expression without roots in the denominator.
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{\dfrac{2\sqrt{3}}{3}-\dfrac{2\sqrt{5}}{5}}{\sqrt{2}-1}
-
& \frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}\centerdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left( \frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5} \right)\left( \sqrt{2}+1 \right)}{\left( \sqrt{2} \right)^{2}-1^{2}} \\
+
&= \frac{\dfrac{2\sqrt{3}}{3}-\dfrac{2\sqrt{5}}{5}}{\sqrt{2}-1}\cdot\frac{\sqrt{2}+1}{\sqrt{2}+1}\\[10pt]
-
& =\frac{\frac{2\sqrt{3}\sqrt{2}}{3}+\frac{2\sqrt{3}\centerdot 1}{3}-\frac{2\sqrt{5}\sqrt{2}}{5}-\frac{2\sqrt{5}\centerdot 1}{5}}{2-1}=\frac{\frac{2}{3}\sqrt{3\centerdot 2}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5}}{1} \\
+
&= \frac{\Bigl(\dfrac{2\sqrt{3}}{3}-\dfrac{2\sqrt{5}}{5}\Bigr)(\sqrt{2}+1)}{(\sqrt{2})^{2}-1^{2}}\\[10pt]
-
& =\frac{2}{3}\sqrt{6}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5} \\
+
&= \frac{\dfrac{2\sqrt{3}\sqrt{2}}{3}+\dfrac{2\sqrt{3}\cdot 1}{3}-\dfrac{2\sqrt{5}\sqrt{2}}{5}-\dfrac{2\sqrt{5}\cdot 1}{5}}{2-1}\\[10pt]
-
\end{align}</math>
+
&= \frac{\dfrac{2}{3}\sqrt{3\cdot 2}+\dfrac{2}{3}\sqrt{3}-\dfrac{2}{5}\sqrt{2\cdot 5}-\dfrac{2}{5}\sqrt{5}}{1}\\[10pt]
 +
&= \frac{2}{3}\sqrt{6}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 12:49, 30. Sep. 2008

The expression is so complicated that we first need to simplify it. We start with the three fractions, \displaystyle 1/\!\sqrt{3}, \displaystyle 1/\!\sqrt{5} and \displaystyle 1/\!\sqrt{2}, which contain root signs and multiply their numerators and denominators in such a way that the root signs end up only in the numerators

Vorlage:Displayed math

Then, multiply the top and bottom of the fraction by 2 so that we get rid of the fractions in the denominator

Vorlage:Displayed math

Now, we can multiply the top and bottom by the conjugate of the denominator \displaystyle \sqrt{2}+1, to get an expression without roots in the denominator.

Vorlage:Displayed math