Lösung 2.1:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Treating <math>4x</math> as one term, we can write
Treating <math>4x</math> as one term, we can write
-
{{Displayed math||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}}
+
{{Abgesetzte Formel||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}}
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain
-
{{Displayed math||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}}
+
{{Abgesetzte Formel||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}}

Version vom 08:23, 22. Okt. 2008

Treating \displaystyle 4x as one term, we can write

\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1

and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain

\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 .