Lösung 2.1:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Treating <math>4x</math> as one term, we can write | Treating <math>4x</math> as one term, we can write | ||
- | {{ | + | {{Abgesetzte Formel||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}} |
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain | and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}} |
Version vom 08:23, 22. Okt. 2008
Treating \displaystyle 4x as one term, we can write
\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 |
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 . |