Lösung 1.3:6f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We can factorize the exponents 40 and 56 as
We can factorize the exponents 40 and 56 as
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt]
40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt]
56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7
56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7
Zeile 8: Zeile 8:
and we then see that they have <math>2^{3} = 8</math> as a common factor. We can take this factor out as an "outer" exponent
and we then see that they have <math>2^{3} = 8</math> as a common factor. We can take this factor out as an "outer" exponent
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt]
3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt]
2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.}
2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.}

Version vom 08:20, 22. Okt. 2008

We can factorize the exponents 40 and 56 as

\displaystyle \begin{align}

40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt] 56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7 \end{align}

and we then see that they have \displaystyle 2^{3} = 8 as a common factor. We can take this factor out as an "outer" exponent

\displaystyle \begin{align}

3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt] 2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.} \end{align}

This shows that \displaystyle 3^{40} = 243^{8} is bigger than \displaystyle 2^{56} = 128^{8}.